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ABSTRACT
Deep Neural Networks (DNN) have demonstrated superior ability
to extract high level embedding vectors from low level features.
Despite the success, the serving time is still the bo�leneck due
to expensive run-time computation of multiple layers of dense
matrices. GPGPU, FPGA, or ASIC-based serving systems require
additional hardware that are not in the mainstream design of most
commercial applications. In contrast, tree or forest-based mod-
els are widely adopted because of low serving cost, but heavily
depend on carefully engineered features. �is work proposes a
Deep Embedding Forest model that bene�ts from the best of both
worlds. �e model consists of a number of embedding layers and a
forest/tree layer. �e former maps high dimensional (hundreds of
thousands to millions) and heterogeneous low-level features to the
lower dimensional (thousands) vectors, and the la�er ensures fast
serving.

Built on top of a representative DNN model called Deep Cross-
ing [21], and two forest/tree-based models including XGBoost and
LightGBM, a two-step Deep Embedding Forest algorithm is demon-
strated to achieve on-par or slightly be�er performance as com-
pared with the DNN counterpart, with only a fraction of serving
time on conventional hardware. A�er comparing with a joint opti-
mization algorithm called partial fuzzi�cation, also proposed in this
paper, it is concluded that the two-step Deep Embedding Forest has
achieved near optimal performance. Experiments based on large
scale data sets (up to 1 billion samples) from a major sponsored
search engine proves the e�cacy of the proposed model.
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1 INTRODUCTION
Well-abstracted features are known to be crucial for developing
good machine learning models, but feature engineering by human
usually takes a large amount of work and needs expert domain
knowledge during a traditional machine learning process. DNNs
have been used as a powerful machine learning tool in both industry
and research for its ability of automatic feature engineering on
various kinds of raw data including but not limited to speech, text
or image sources without acquiring domain expertises [8, 15, 20, 21].

With the support of hardware acceleration platforms such as
clusters of general-purpose graphics processing units (GPGPUs),
�eld programmable gate arrays (FPGAs) or ASIC-based serving
systems [1, 4, 14], DNNs are capable of training on billions of data
with scalability. However, DNNs are still expensive for online
serving due to the fact that most of the commercial platforms are
central processing units (CPUs) based with limited applications of
these acceleration hardwares.

Tree-based models such as random forests (RFs) and gradient
boosted decision trees (GBDTs), on the other hand, with their run-
time e�ciency and good performance, are currently popular produc-
tion models in large scale applications. However, the construction
of strong abstracted features to make the raw data meaningful for
tree-based models requires in depth domain knowledge and is o�en
time-consuming.

�is work proposes a hybrid model that can carry on the per-
formance of DNNs to run-time serving with speed comparable to
forest/tree-based models.
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�e paper is arranged in the following structure. Sec. 2 sets up
the context of the application domain where the Deep Embedding
Forest is developed. Sec. 3 gives examples of features in the context
of the sponsored search. Sec. 4 provides a formal statement of the
problem by introducing the model architecture, components, and
design principles. Sec. 5 describes the training methodology that
involves the initialization of the embedding layers, the training
of the forest layer, and the joint optimizationa through a partial
fuzzi�cation algorithm. Sec. 6 presents experiment results with data
sets of various sizes up to 1 billion samples. It also demonstrates
the model’s ability of working with di�erent kind of forest/tree-
based models. Sec. 7 elaborates on the relationships of the Deep
Embedding Forest model with a number of related work. Sec. 8
concludes the paper and points out the future directions. �e appen-
dix provides the implementation details of the partial fuzzi�cation
algorithm.

2 SPONSORED SEARCH
Deep Embedding Forest is discussed in the context of sponsored
search of a major search engine. Readers can refer to [6] for an
overview on this subject. In brief, sponsored search is responsible
for showing ads alongside organic search results. �ere are three
major agents in the ecosystem: the user, the advertiser, and the
search platform. �e goal of the platform is to show the user the
advertisement that best matches the user’s intent, which was ex-
pressed mainly through a speci�c query. Below are the concepts
key to the discussion that follows.

�ery: A text string a user types into the search box
Keyword: A text string related to a product, speci�ed by an

advertiser to match a user query
Title: �e title of a sponsored advertisement (referred to as

“an ad” herea�er), speci�ed by an advertiser to capture a
user’s a�ention

Landing page: A product’s web site a user reaches when the
corresponding ad is clicked by a user

Match type: An option given to the advertiser on how closely
the keyword should be matched by a user query, usually
one of four kinds: exact, phrase, broad and contextual

Campaign: A set of ads that share the same se�ings such
as budget and location targeting, o�en used to organize
products into categories

Impression: An instance of an ad being displayed to a user.
An impression is usually logged with other information
available at run-time

Click: An indication of whether an impression was clicked
by a user. A click is usually logged with other information
available at the run-time

Click through rate: Total number of clicks over total num-
ber of impressions

Click Prediction: A critical model of the platform that pre-
dicts the likelihood a user clicks on a given ad for a given
query

Sponsored search is only one kind of machine learning applica-
tion. However, given the richness of the problem space, the various
types of features, and the sheer volume of data, we think our results
can be generalized to other applications with similar scale.

Feature name Type Dimension
�ery Text 49,292
Keyword Text 49,292
Title Text 49,292
MatchType Category 4
CampaignID ID 10,001
CampaignIDCount Numerical 5

Table 1: Examples of heterogeneous and high dimensional
features used in typical applications of sponsored search

3 FEATURE REPRESENTATION
�is section provides example features used in the prediction mod-
els of sponsored search. �e features in Table 1 are available during
run-time when an ad is displayed (an impression). �ey are also
available in o�ine logs for model training.

Each feature is represented as a vector. Text features such as a
query are converted into tri-le�er grams with 49, 292 dimensions
as in [11]1. Categorical input such as MatchType is represented by
a one-hot vector, where exact match (see Sec. 2) is [1, 0, 0, 0], phrase
match is [0, 1, 0, 0], and so on.

�ere are usually millions of campaigns in a sponsored search
system. Instead of converting campaign ids into a one-hot vector
with millions of dimensions, a pair of companion features is used.
Speci�cally, CampaignID is a one-hot representation consisting
only of the top 10, 000 campaigns with the highest number of clicks.
�e 10, 000th slot (index starts from 0) is saved for all the remaining
campaigns. Other campaigns are covered by CampaignIDCount,
which is a numerical feature that stores per campaign statistics such
as click through rate. Such features will be referred as a counting
feature in the following discussions. All the features introduced
above are sparse features except the counting features.

4 PROBLEM STATEMENT
�e goal is to construct a model with the structure in Fig. 1 that
consists of feature inputs, the embedding layers, the stacking layer,
the forest layer, and the objective function. �e model will be
referred as DEF or the DEF model in the following discussions.

4.1 Model Components
DEF allows low level features of di�erent natures including sparse
one-hot or categorical features, and dense numerical features. �ese
features can be extracted from text, speech, or image sources.

An embedding layer maps low level features to a di�erent feature
space. It has a single layer of neural network with the general form
of:

ỹj = д(Wjxj + bj ), (1)
where j is the index to the individual features xj ∈ Rnj , Wj is an
mj × nj matrix, b ∈ Rmj is the vector of the bias terms, ỹj is the
embedding vector, and д(·) is a non-linear activation function such
as ReLU, sigmoid, or tanh. When mj < nj , embedding is used to
reduce the dimensionality of the input vector and construct high
level features.
1Unlike one-hot vectors, tri-le�er grams are usually multi-hot and have integer values
larger than 1 on non-zero elements
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Feature #1 Feature #2 Feature #n

Stacking Layer

Embedding #1 Embedding #n

Forest Layer

Objective

. . .

Figure 1: �e Deep Embedding Forest model

�e stacking layer concatenates the embedding features into one
vector as the following:

ỹ = [ỹ0, ỹ1, · · · , ỹK−1], (2)

where K is the number of individual features. Note that features
with low dimensionality can be stacked without embedding. An
example is Feature #2 in Fig. 1.

�e stacking vector is sent as input to the forest layer, which
is represented as F(Ψ,Θ,Π), where Ψ de�nes the number of trees
in the forest and the corresponding structure, Θ is the parameter
set of the routing functions on the decision nodes, and Π is the
parameter set of the distribution functions on leaf nodes.

DEF allows objective functions of various types including but
not limited to classi�cation, regression, and ranking.

4.2 DEF Properties
When designed and implemented properly, DEF is expected to pos-
sess two major advantages enabled by the unique model structure.

�e �rst is to minimize the e�ort of manual feature engineer-
ing. It is usually a challenge to forest/tree-based models to handle
low level features exceeding tens of thousands dimensions. �e
embedding layers can comfortably operate on dimensions 10 or
100 times higher, and automatically generate high level embedding
features to the size manageable by the forest/tree-based models.
�e embedding layers are also trained together with the rest of
the model using the same objective function. As a result, they are
more adapted to the applications as compared with stand-along
embedding technologies such as Word2Vec [17].

�e second is to minimize the run-time latency. Based on the
structure in Fig. 1, the serving time per sample is determined by
the embedding time T1 and prediction2 time T2. T1, which is the
run-time of a single layer of neurons, makes a small fraction of
the total in a typical DNN with multiple deep layers. T1 is zero for
dense numerical features when they are stacked without embedding.
�e complexity of embedding a sparse feature is O(n0̄ne ), where
n0̄ is the number of non-zero elements, and ne is the dimension

2�e word prediction in this context refers to a general scoring operation that is
applicable to classi�cation, regression, ranking, and so on

Feature #1 Feature #2 Feature #n

Stacking Layer

Embedding #1 Embedding #n

Multiple Residual Units

Objective

. . .

Scoring Layer

Figure 2: �e Deep Crossing Model used to initialize the em-
bedding layers of DEF

of the corresponding embedding vector. As an example, a sparse
tri-le�er gram [11] has around 50K dimensions but usually with
n0̄ ≤ 100. For a typical ne between 128 and 256, the run-time cost
of an embedding layer of a sparse feature is negligible.

�e prediction time T2 is a function of ntdtnf , where nt is the
number of trees, dt is the average depth of the trees in the forest,
and nf is the total number of feature dimensions the decision or
routing function depends on at each internal (or non-leaf) node.
DEF uses decision nodes that rely on only one feature dimension
to ensure serving speed. T2 is then proportional to ntdt , which
is independent of the dimensions of the stacking vector3. �is is
much cheaper than a typical DNN with multiple layers of neurons.

5 TRAINING METHODOLOGY
Training the DEF model requires optimization of the objective
function w.r.t. {Wj }, {bj }, Ψ, Θ, and Π (see de�nitions in Sec. 4.1).
It involves three steps detailed in the following sub-sections.

5.1 Initialize Embedding Layers with Deep
Crossing

�e �rst step is to initialize {Wj }, {bj } in Equ. 1 with the Deep
Crossing model [21]4. As can be seen from Fig. 2, the embedding
layers and the stacking layer are exactly the same as in the DEF
model in Fig. 1. �e di�erence is that the forest layer is replaced by
the layers inside the do�ed rectangle. �e multiple residual units
are constructed from the residual units, which is the basic building
block of the Residual Net [7] that claimed the world record in the
ImageNet contest. �e use of residual units provides Deep Crossing
with superior convergence property and be�er control to avoid
over��ing.

3To be more precise, the type of DEF that possesses such property is called a Two-Step
DEF, as de�ned later in Sec. 5.4
4Code is available under h�ps://github.com/Microso�/CNTK/wiki/Deep-Crossing-on-
CNTK
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While other DNNs can be applied in the context of DEF, Deep
Crossing o�ers some unique bene�ts that especially suitable for
this task. First of all, it is designed to enable large scale applications.
In [21], Deep Crossing was implemented on a multi-GPU platform
powered by the open source tool called Computational Network
Toolkit (CNTK)[1]5. �e resulting system was able to train a Deep
Crossing model with �ve layers of residual units (10 individual
layers in total), with 2.2 billion samples of more than 200K dimen-
sions. �e model signi�cantly exceeded the o�ine AUC of a click
prediction model in a major sponsored search engine.

Another key bene�t of Deep Crossing is the ability to handle low
level sparse features with high dimensions. In the above example,
three tri-le�er grams with 50K dimensions each were in the features
list. �e feature interactions (or cross features) were automatically
captured among sparse features, and also w.r.t. other individual
features such as CampaignID and CampaignIDCount in Table 1.
�e resulting embedding features are dense, and in much lower
dimensions that fall into the comfort zone of forest/tree-based
models.

With the presence of a general scoring layer, Deep Crossing also
works with all the objective functions of DEF.

It should be pointed out that there is no di�erence in the training
process of using Deep Crossing as a stand-alone model versus
DEF initialization. In other words, the optimization is w.r.t. the
embedding parameters, the parameters in the multiple residual
units, and those in the scoring layer. �e di�erence is in the usage
of the model a�er the training completes. Unlike the stand-along
model, DEF uses only the embedding parameters for subsequent
steps.

5.2 Initialize the Forest Layer with XGBoost
and LightGBM

�e embedding layers establish a forward function that maps the
raw features into the stacking vector:

ỹi = G({xj }i ; {W0
j }, {b

0
j }), (3)

where i is the index to the training samples. �e initial values of
the embedding parameters are denoted as {W0

j } and {b0
j }. �e

nonlinear operator G is the combination of д in Equ. 1 and the
vector-stacking operator in Equ. 2.

�e second step in constructing a DEF builds on top of this func-
tion to initialize the forest layer. �is is accomplished by training a
forest/tree-based model using the mapped sample and target pairs
{(ti , ỹi )}, where ti is the target of the ith training sample. Both
XGBoost and LightGBM are applied to serve this purpose.

XGBoost [3]6 is a gradient boosting machine (GBM) that is
widely used by data scientists, and is behind many winning so-
lutions of various machine learning challenges.

LightGBM [16]7 is another open source GBM tool recently devel-
oped by Microso�. It uses histogram based algorithms to accelerate
training process and reduce memory consumption [12, 18] and
also incorporates advanced network communication algorithms to
optimize parallel learning.
5h�p://www.cntk.ai
6h�ps://github.com/dmlc/xgboost
7h�ps://github.com/Microso�/LightGBM

�e outcome of this step, either produced by XGBoost or Light-
GBM, becomes the initial values of the forest parameters including
Ψ0, Θ0, and Π0.

5.3 Joint Optimization with Partial
Fuzzi�cation

�e third step is a joint optimization that re�nes the parameters
of the embedding layers {Wj } and {bj }, and the parameters of
the forest layer Θ, and Π. Note that the number and structure of
trees (i.e., Ψ) are kept unchanged. Ideally a joint optimization that
solves these parameters holistically is preferred. Unfortunately,
this is non-trivial mostly due to the existence of the forest layer.
Speci�cally, the search of the best structure and the corresponding
decision and weight parameters in the forest layer usually relies
on greedy approaches, which are not compatible with the gradient-
based search for the neural-based embedding layers. To enable this,
DEF has to overcome the hurdle of converting the re�nement of
the forest into a continuous optimization problem.

We start by looking into the pioneer work in [13, 19, 22], where
the above problem is solved by fuzzifying the decision functions8

of the internal nodes. Instead of making a binary decision on the
r th internal node, a fuzzy split function makes fuzzy decisions on
each node. �e probability of directing a sample to its le� or right
child node is determined by a sigmoidal function:

µLr (ỹ) =
1

1 + e−cr (vr ·ỹ−ar )
,

µRr (ỹ) =
1

1 + ecr (vr ·ỹ−ar )
= 1 − µLr (ỹ), (4)

where r denotes the index of the internal nodes, vr is the weight
vector, ar is the split value of the scalar variable vr · ỹ, and cr is the
inverse width that determines the fuzzy decision range. Outside
this range, the assignment of a sample to the child nodes is approx-
imately reduced to a binary split. ỹ ≡ ỹi is the stacking vector of
the ith training sample. �e index i is dropped here for simplicity.
�e functions µLr , and µRr are de�ned for the le� child and the right
child (if exists), respectively. �e prediction of the target t is:

t̄ =
∑
l ∈L

µl (ỹ)πl , (5)

where l is a leaf node in the set of all leaf nodes L, µl (·) is the
probability of ỹ landing in l , and πl is the corresponding prediction.
Note that µl (·) is a function of all {µL,Rr (ỹ)} in Equ. 4 along the
path from the root to l .

A direct bene�t of such fuzzi�cation is that a continuous loss
function Loss({ti , t̄i }) is di�erentiable w.r.t. {vr }, {cr }, {ar }, and
{πl }. �e downside, however, is the cost of the prediction, which
requires the traversal of the entire tree, as indicated in Equ. 5.
From Equ. 4, it can be seen that the split function depends on
all dimensions of the stacking features. As has been discussed in
Sec. 4.2, this is also computationally expensive.

�e above approach will be referred as full fuzzi�cation herea�er,
due to the fact that it requires full traverse of the forest, and has
dependency on all feature dimensions.
8Also referred as split function or routing function in literature
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Algorithm 1: Two-Step Deep Embedding Forest
Input: Dataset D

1 Train a Deep Crossing model to initialize embedding layers
with parameters {Wj } and {bj } (Sec. 5.1)
. Map D to a low-dimension feature space (noted as

D ′)
2 for d ∈ D do
3 compute stacking vector ỹ according to Equ. 3
4 pair ỹ with target t
5 end
6 Train a forest/tree-based model with D ′ to initialize the forest

layer with parameters Ψ, Θ and Π (Sec. 5.2)

DEF simpli�es full fuzzi�cation by having each internal node
address only one dimension of the stacking vector that was selected
by the forest/tree model to conduct the joint optimization. �e
fuzzi�cation on each node is simpli�ed to the following:

µLr (ỹ) =
1

1 + e−cr (ỹr−ar )
,

µRr (ỹ) =
1

1 + ecr (ỹr−ar )
= 1 − µLr (ỹ), (6)

where cr is the inverse width, and ar is the split value on the r th
node. �ese parameters are initialized by the split function that
has been learned in Sec. 5.2. �e binary decision is replaced by
a fuzzy decision especially for the samples that land within the
fuzzy decision region. �e joint optimization allows parameters
{Wj }, {bj }, Θ, and Π to evolve simultaneously to reach the model
optimum.

As compared with the split function in Equ. 4, the linear trans-
form of the stacking vector ỹ is removed. �is is because each node
is dedicated to only one dimension of the stacking vector, which is
denoted as ỹr in Equ. 6. More speci�cally, ỹr is the feature value
of the dimension selected by the r th node based on Ψ0 and Θ0.
�e prediction is the weighted average of all the leaf values of the
tree, as shown in Equ. 5. Compared to full fuzzi�cation, the time
complexity is reduced by the length of the stacking vector, since
the split on each node only relays on the dimension that is selected
by the forest/tree model.

5.4 Two-Step DEF vs. �ree-Step DEF
�ere are two options applying DEF. �e �rst option, referred
herea�er as the Two-Step DEF, involves only the initialization steps
in Sec. 5.1 and Sec. 5.2. Another option involves the full three steps
including partial fuzzi�cation described in the above section. �is
option will be referred herea�er as the �ree-Step DEF.

Algorithm 1 summarizes the procedures of the Two-Step DEF.
First, a Deep Crossing model is trained with the input dataset to
initialize the embedding layers. �en, the input data are mapped
to a low-dimension feature space to generate a mapped dataset
D ′. Finally, a forest/tree-based model is trained with the mapped
dataset to initialize the forest layer. �e �ree-Step DEF is described
in Algorithm 2, which includes a further step of joint optimization

Algorithm 2: �ree-Step Deep Embedding Forest
Input: Dataset D

1 Train a Deep Crossing model to initialize embedding layers
with parameters {Wj } and {bj } (Sec. 5.1)
. Map D to a low-dimension feature space (noted as

D ′)
2 for d ∈ D do
3 compute stacking vector ỹ according to Equ. 3
4 pair ỹ with target t
5 end
6 Train a forest/tree-based model with D ′ to initialize the forest

layer with parameters Ψ, Θ and Π (Sec. 5.2)
. Joint optimization with partial fuzzification

(Sec. 5.3)

7 form ∈ M do
. M is a set of mini-batches of D

. Forward Propagation

8 for d ∈m do
9 compute ỹ according to Equ. 3

10 for l ∈ L do
. L is a set of all leaf nodes in the

forest.

11 compute score on l according to Equ. 8 (App. A)
12 end
13 compute prediction score t̄ according to Equ. 9

(App. A)
14 end

. Backward Propagation

15 compute { ∂O∂πl }, {
∂O
∂cr
}, { ∂O∂ar }, {

∂O
∂Wj

, { ∂O
∂bj
}

16 update {πl }, {cr }, {ar }, {Wj }, {bj }
17 end

a�er the Two-Step DEF. �e joint optimization conducts an end-to-
end learning procedure, in which the parameters of the embedding
and forest layers are simultaneously optimized. Note that O is the
sum of the objective values of all the samples in mini-batch m.

As mentioned in Sec. 4.2, the prediction time of the Two-Step
DEF is proportional to ntdt , where nt is the number of trees, and
dt is the average depth of the trees in the forest. For the �ree-
Step DEF, the partial fuzzi�cation relies on information from all
nodes. As a result, the prediction time T2 is a function of nt lt ,
where lt is the average number of nodes of the trees. �e ratio
of time complexity between �ree-Step DEF and Two-Step DEF is
lt
dt

, which can grow rapidly as dt increases since lt can be roughly
exponential in terms of dt .

6 EXPERIMENT RESULTS
�is section reports results using click prediction data. �e problem
is to predict the probability of click on an ad (see context in Sec. 2),
given input strings from a query, a keyword, an ad title, and a vector
of dense features with several hundred dimensions.

As explained in Sec. 3, query strings are converted into tri-le�er
grams, and so are the keyword and title strings. �e dense features
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are mostly counting features similar to the CampaignIDCount fea-
ture in Table 1. �e raw input feature has around 150K dimensions
in total, and is a mix of both sparse and dense features.

All models including Deep Crossing model, XGBoost, and Light-
GBM share the same log loss function as the objective. �e em-
bedding vector is 128 dimensional for each tri-le�er gram and the
dense features. �is leads to a stacking vector of 512 dimensions.
Deep Crossing uses two residual units9, where the �rst is connected
with the input stacking vector, and the second takes its output as
the input. �e �rst residual unit has three layers with the sizes of
512, 128, and 512, respectively. �e second residual unit has similar
dimensions, except that the middle layer has only 64 neurons.

We used a simpli�ed version of the Deep Crossing model that
outperformed the production model in o�ine experiments, as re-
ported in [21]. Its log loss performance is slightly worse than the
original model but the model size is more suitable to demonstrate
the e�cacy of the DEF model. As can be seen in the following
experiments, DEF can reduce prediction time signi�cantly even the
Deep Crossing model is a simpli�ed one.

Both XGBoost and LightGBM have parallel implementations.
We will use both of them to demonstrate that DEF works with
di�erent kinds of forest/tree-based models. However, since parallel
LightGBM is already set up in our environment, we will use it for
most of the experiments.

In order to achieve a clean apple-to-apple comparison, the ma-
jority of the experiments are based on the prediction time using a
single CPU processor, without relying on any of the SIMD instruc-
tions (referred herea�er as plain implementation).

6.1 Experiment with 3 Million Samples: Log
Loss Comparison

For the �rst set of experiments, the training data has 3.59M (million)
samples, and the test data has 3.64M samples. �e Deep Crossing
model was trained on 1 GPU and converged a�er 22 epoches. A
stacking vector was generated for each sample based on the forward
computation of the Deep Crossing model, and was used as the input
to train the forest models including both XGBoost and LightGBM.
�e resulting models are the Two-Step DEFs. We also experimented
with the partial fuzzi�cation model initialized by LightGBM. In all
the experiments herea�er, the performance will be reported in
terms of relative log loss, de�ned as the following:

γDEFr =
γDEF

γDC
× 100, (7)

where γ and γr are the actual and relative log losses, respectively,
and DC represents the Deep Crossing Model for simplicity. As
with the actual log loss, a smaller relative log loss indicates be�er
performance.

6.1.1 Two-Step DEF with XGBoost as the Forest Layer. XGBoost
converged a�er 1108 iterations with a maximum depth of 7. �e
Two-Step DEF slightly outperformed Deep Crossing, as shown in
Table 2.

6.1.2 Two-Step DEF with LightGBM as the Forest Layer. Light-
GBM model converged a�er 678 iterations with a maximum number
9See Sec.5.2 in the Deep Crossing paper [21] for more information about residual unit

Figure 3: �e Comparison of scalability of the prediction
runtime per sample on CPU processors among Deep Cross-
ing, Two-Step DEF with XGBoost and Two-Step DEF with
LightGBM. Note that the axis of prediction time for DEF is
on the le� side, while the one for Deep Crossing is on the
right side

of leaves of 128. As shown in Table 2, the Two-Step DEF using Light-
GBM performed be�er than Deep Crossing in log loss. Note that
the apple-to-apple performance comparison between XGBoost and
LightGBM requires a di�erent se�ing, which is less of interest in
this experiment.

6.1.3 Three-StepDEFwith Partial Fuzzification. Taking the Light-
GBM model as the initial forest layer, the joint optimization using
partial fuzzi�cation achieved slightly be�er accuracy with a relative
log loss of 99.81, as shown in Table 2.

6.2 Experiment with 3 Million Samples:
Prediction Time Comparison

As shown in Table 2, the prediction time for Deep Crossing, Two-
Step DEF with XGBoost, and Two-Step DEF with LightGBM are
2.272 ms, 0.168 ms, and 0.204 ms, respectively. �e prediction time
is measured at the per sample level using one CPU processor, with
all the I/O processes excluded.

We also experimented the prediction time with di�erent number
of processors. As shown in Fig. 3, the prediction time for DEF with
both XGBoost and LightGBM decreases as the number of processors
increases. �e prediction time for Deep Crossing, on the other hand,
started to increase a�er reaching a minimum of 0.368 ms with �ve
processors. �is is expected because of its inherently sequential
computation between the consecutive layers. With more than �ve
processors, the parallelism is outweighed by the communication
overhead.

A caveat to call out is that both XGBoost and LightGBM are
using sample partition for parallelization in the current implemen-
tation of the predictor. �is is in theory di�erent from the per
sample prediction time that we want to measure. However, since
the forest/tree-based models are perfectly parallel, we expect that
the e�ect of sample partition will be a good approximation of parti-
tioning with individual trees.
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Deep Crossing Two-Step DEF (XGBoost) Two-Step DEF (LightGBM) �ree-Step DEF (LightGBM)
Relative log loss 100 99.96 99.94 99.81
Time (ms) 2.272 0.168 0.204 -

Table 2: Comparison of performance and prediction time per sample between Deep Crossing and DEF.�emodels are trained
with 3.59M samples. Performance is measured by a relative log loss using Deep Crossing as the baseline. �e prediction time
per sample was measured using 1 CPU processor

Deep Crossing Two-Step DEF
Relative log loss 100 99.77
Time (ms) 2.272 0.162

Table 3: Comparison of performance and prediction time
per sample between the Deep Crossing and Two-Step DEF
using LightGBM that are trained with 60M samples. �e pre-
dictions both were conducted on 1 CPU processor. Perfor-
mance is measured by relative log loss using Deep Crossing
as the baseline

�e Deep Crossing predictor in this experiment was imple-
mented with the Intel MKL to utilize multiple processors. �is
implementation is faster than the plain implementation even when
there is only one processor involved. As a result, the prediction time
in this section can not be compared with those in other experiments.

Note that the speedup was achieved with DEF performing be�er
in terms of log loss. If the goal is to achieve on-par performance
in practice, the number of iterations (trees) can be signi�cantly
reduced to further reduce the run-time latency.

Also note that we didn’t compare the prediction time of the
�ree-Step DEF in Table 2. �is is because the �ree-Step DEF
runs on GPUs, as detailed in the Appendix. From the discussion in
Sec. 5.4, it is clear that the �ree-Step DEF is always slower than
the Two-Step DEF, if both measured against a CPU processor.

6.3 Experiment with 60 Million Samples
�e same experiment was applied to a dataset which contains 60M
samples. �e test data has 3.59M samples. �e comparison of the
performance and speed is shown in Table 3. �e Deep Crossing
model converged a�er 14 epochs, of which the log loss is normal-
ized to 100. �e stacking vector generated by the Deep Crossing
model was then used to train LightGBM, which converged with a
normalized log loss of 99.77 a�er 170 iterations. �e LightGBM in
this experiment used a maximum number of leaves of 2048. �e
prediction time per sample is 2.272 ms for the Deep Crossing Model,
and is 0.162 ms for DEF. �e joint optimization was not conducted
because the training process took too long.

6.4 Experiment with 1 Billion Samples
�is experiment applied DEF to a large sample set with 1B (billion)
samples. A distributed LightGBM was used to train the forest layer
on a 8 server cluster. We kept the test data the same as before. �e
Deep Crossing model was trained on a GPU cluster with 16 GPUs,
and converged a�er 30 epochs. At the time this paper is submi�ed,
the best LightGBM model has 70 trees with the maximum number

Deep Crossing Two-Step DEF
Relative log loss 100 100.55
Time (ms) 2.272 0.204

Table 4: �e same as Table 3 but for the models trained by
1B samples

of leaves equal to 16384. As shown in Table 4, the LightGBM
model performed slightly worse than the Deep Crossing model.
Regarding the prediction speed, LightGBM outperformed Deep
Crossing approximately by more than 10 times.

6.5 �e E�ect of Scale
Table 5 compares log loss performance of the Deep Crossing models
and the DEF models as the number of samples increases. �e
baseline log loss is based on the Deep Crossing model trained with
3.59M samples. As can be seen from the table, the log loss decreases
as the number of samples increases to 60M and 1B. DEF models
exhibit the same trend. It is important to point out that even though
the DEF model trained at 1B samples performed worse than the
Deep Crossing counterpart, it is still be�er than the Deep Crossing
model trained with 60M samples.

7 RELATEDWORK
Combining a decision forest/tree with DNN has been studied before.
Deep Neural Decision Forest [13] represents the latest result along
this direction, where a decision forest is generalized and trained
together with DNN layers with Back Propagation. It avoids the hard
problem of explicitly �nding the forest structure Ψ but has to rely
on decision nodes that are the functions of all input dimensions. As
a result, the run-time complexity is O(nt ltnf ) instead of O(ntdt )10.
�e work in [19] learns a forest �rst and maps it to a DNN to pro-
vide be�er initialization when training data is limited. �e DNN is
then mapped back to a forest to speed up run-time performance.
In order to achieve O(ntdt ) complexity, it has to use an approxima-
tion to constrain the number of input nodes (the features) to the
decision nodes, which signi�cantly deteriorates the accuracy. In
contrast, DEF without joint optimization achievesO(ntdt ) run-time
complexity with on-par or slightly be�er accuracy than the DNN
counterpart.

�e idea of pre-training components of the network separately
as initialization (similar to Sec. 5.1) in order to construct high level
features has also been investigated in autoencoders and Deep Belief
Networks (DBNs) [2, 23]. Nevertheless, this paper is fundamentally
di�erent from those previous works in two main aspects. First,
10See Sec. 4.2 for de�nitions
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3M 60M 1B
Deep Crossing 100 99.78 98.71
Two-Step DEF (LightGBM) 99.94 99.56 99.24

Table 5: Comparison of performance of Deep Crossing and
Two-Step DEF with LightGBM in the 3M, 60M and 1B experi-
ments. Performance is measured by a relative log loss using
Deep Crossing in the 3M experiment as the baseline

the pre-training in autoencoders and DBNs are performed in unsu-
pervised fashion as opposed to Sec. 5.1 in which supervised Deep
Crossing technique is used. Secondly, our work is mainly motivated
by obtaining e�cient prediction while maintaining high perfor-
mance, whereas the principal motivation for pre-training in those
previous papers is mostly to achieve high-level abstraction.

As discussed earlier, the ine�cient serving time of DNNs is
mainly because of expensive run-time computation of multiple lay-
ers of dense matrices. �erefore, a natural idea to obtain e�ciency
in online prediction might be to convert DNNs into an (almost)
equivalent shallow neural network once they are trained. �is idea
even sounds theoretically feasible due to the richness of neural net-
works with simply one single hidden layer according to Universal
Approximation �eorem [10]. Nevertheless, the function modeled
by DNN is fairly complicated due to deep embedding features. �us,
despite universality, a single layer neural network will become im-
practical as it may need astronomical number of neurons to model
the desired function [5].

It is also worthwhile to mention the work in [9], which combines
a boosted decision forest with a sparse linear classi�er. It was
observed that the combined model performs be�er than either of
the models on its own. If this is the case, DEF can be easily extended
to add a linear layer on top of the forest layer for be�er performance.
�e computational overhead will be negligible.

DEF is built on top of the Deep Crossing model [21], the XG-
Boost [3] model, and the LightGBM [16] model. While the deep
layers in the Deep Crossing model are replaced with the forest/tree
layer in the DEF model, they are critical in discovering the dis-
criminative embedding features that make the construction of the
forest/tree models an easier task.

8 CONCLUSION AND FUTUREWORK
DEF is an end-to-end machine learning solution from training to
serving for large scale applications using conventional hardware.
Built on top of the latest advance in both DNN and forest/tree-based
models, DEF handles low-level and hight dimensional heteroge-
neous features like DNN, and serves the high precision model like
a decision tree.

DEF demonstrates that a simple two-step approach can produce
near optimal results as more complex joint optimization through
fuzzi�cation. While DNNs with fuzzi�cation have been reported to
perform be�er than the plain DNNs, DEF is the �rst we are aware
of that outperforms the DNN counterpart without compromising
the property of fast serving.

Also because of the two-step approach, DEF serves as a �exible
framework that can be adapted to di�erent application scenarios. In

the paper, we demonstrated that DEF with XGBoost works as well
as DEF with LightGBM. As a result, applications can choose the
forest/tree-based models that work best in terms of availability and
performance. For instance, we decided to use LightGBM (instead
of XGBoost) for large scale experiments because we had it set up
running in a parallel environment.

DEF can work with other types of DNN-based embedding. How-
ever, embedding approaches such as LSTM and CNN cost signi�cant
amount of run-time calculation that cannot be saved by the for-
est/tree layer. �is is a direction we are looking into as a future
work.
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APPENDIX A IMPLEMENTATION OF
PARTIAL FUZZIFICATION IN
DEF

�e joint optimization using partial fuzzi�cation in DEF was de-
veloped as a forest node in CNTK so that it is compatible with the
embedding and scoring layers of Deep Crossing. Both the forward
and backward operations are implemented on GPU for acceleration.

A.1 Initialization
�e structure of the trees and the forest parameters {cr }, {ar }
and {πl } are initialized with the trained forest/tree model. �e
embedding parameters {Wj }, {bj } are initialized by the trained
Deep Crossing model.

A.2 Forward Propagation
�e prediction of a sample on leaf l is de�ned as

tl = πl
∏
r ∈Ωl

µL,Rr (ỹ), (8)

where r and l denote the index of internal and leaf nodes respec-
tively, Ωl represents the set of internal nodes along the route from
root to leaf l . �e stacking vector ỹ is computed by Equ. 1. �e
terms µL,Rl (ỹ) are de�ned in Equ. 6. �e selection of µLl (ỹ) or µRl (ỹ)
depends on which child node r directs to along the path. �e raw
score t̄ is de�ned as:

t̄ =
∑
l ∈L

tl , (9)

where L represents the set of all the leaf nodes in the forest. �e
raw score is then transformed to the prediction score via a sigmoidal
function. �e prediction score is a function of the split parameters
{cr } and {ar }, the leaf parameter {πl }, and the stacking vector ỹ.

A.3 Backward Propagation
�e backward propagation re�nes the fuzzi�cation parameters {cr },
{ar } and {πl }, and the input stacking vector ỹ. De�ne the gradient
of the objective function (denoted as O) with respect to the raw
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score t̄ as:
δt =

∂O
∂t̄
. (10)

�e updating equation for optimizing O w.r.t. the prediction pa-
rameter on leaf l (i.e., πl ) is:

∂O
∂πl
=
∂O
∂t̄

∂t̄

∂tl

∂tl
∂πl
= δt

∏
r ∈Ωl

µL,Rr (ỹ). (11)

�e gradient w.r.t. cr on the r th internal node can be expressed as:
∂O
∂cr
=
∂O
∂t̄

∑
l ∈Lr

∂t̄

∂tl

∂tl
∂cr
= σt

∑
l ∈Lr

πl · ηl
∏

p∈Ωl ,p,r

µL,Rp (ỹ), (12)

where p is the index of the internal nodes, and Lr is the set of the
leaf nodes from which the paths to root contain the internal node
r . Depending on which child the r th node heads to along the path
from root to leaf l , ηl is de�ned as:

ηLl = µ
L
r (ỹ)(1 − µLr (ỹ)(ỹr − ar ),

ηRl = µ
R
r (ỹ)(1 − µRr (ỹ)(ar − ỹr ). (13)

�e gradient of O w.r.t. ar has a similar expression as cr in Equ. 12:
∂O
∂ar
=
∂O
∂t̄

∑
l ∈Lr

∂t̄

∂tl

∂tl
∂ar
= σt

∑
l ∈Lr

πl · ζl
∏

p∈Ωl ,p,r

µL,Rp (ỹ), (14)

where ζl is de�ned as:

ζ Ll = −cr · µ
L
r (ỹ)(1 − µLr (ỹ),

ζ Rl = cr · µ
R
r (ỹ)(1 − µRr (ỹ). (15)

Here, once again, the selection of expression of ζl is path-dependent.
For the input vector ỹ on dimension k (denoted as ỹk ), the gradient
is wri�en as:

∂O
∂ỹk
=
∂O
∂t̄

∑
l ∈Lk

∂t̄

∂tl

∂tl
∂ỹk

= σt
∑
l ∈Lk

πl
∑

q∈Ωl,k

ξl,q
∏

p∈Ωl ,p,q

µL,Rp (ỹ),
(16)

where q is the index of the internal nodes, Lk is the set of leaf nodes
to which the routes from root pass one or more internal nodes with
a split feature on ỹk . �e set Ωl,k is the internal nodes that dedicate
to the kth dimension of ỹ along the route to leaf l , and the set Ωl is
the same as in Equ. 8. �e term ξl,q is de�ned as:

ξ Ll,q = cq · µ
L
q (ỹ)(1 − µLq (ỹ),

ζ Rl,q = −cq · µ
R
q (ỹ)(1 − µRq (ỹ). (17)

As ỹ is a function of {Wj }, {bj }, the gradient of O with respect to
the two embedding parameters can be computed through the chain
rule using ∂O

∂ỹk
.
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