
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Breathing Rate Prediction Using Finger-tip Sensor

Permalink
https://escholarship.org/uc/item/6bp9b9rg

Author
Rahmanian, Holakou

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bp9b9rg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

BREATHING RATE PREDICTION USING FINGER-TIP SENSOR

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Holakou Rahmanian

June 2015

The Dissertation of Holakou Rahmanian
is approved:

Professor Manfred K. Warmuth, Chair

Professor Matthew R. Guthaus

Professor David P. Helmbold

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Holakou Rahmanian

2015

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication ix

Acknowledgments x

1 Introduction 1
1.1 Wearable Sensors and Personalized Healthcare 1
1.2 Motivation: Exploiting Redundancy . 2
1.3 Breathing Rate Prediction . 2
1.4 Related Work . 4

2 The Breathing Rate Prediction Problem 6
2.1 The Sensor Device . 6
2.2 The Data . 8
2.3 The Breathing Rate Prediction Problem 9

2.3.1 Signal Reconstruction . 10
2.3.2 Peak Detection . 12

3 Signal Reconstruction by Filtering 16
3.1 Filters . 19
3.2 Reconstructing the Breathing Signal . 20
3.3 Online Window-Based Algorithms . 23

3.3.1 Fast Sliding Window DFT . 24
3.3.2 Online Sliding Window Ideal Filtering 32

4 Signal Reconstruction by Neural Networks 42
4.1 Preparing the Dataset . 43

iii

4.1.1 Choosing k and l . 43
4.2 Neural Network for Reconstruction . 45
4.3 Regularization . 46
4.4 Additional Techniques . 47

4.4.1 Moving Average . 48
4.4.2 Auto-Encoders . 51

5 Experiments and Results 53

6 Conclusions 59
6.1 Overview and Conclusions . 59
6.2 Future Work . 60

Bibliography 62

A Visualized Performance over Human Subjects 65

iv

List of Figures

2.1 The sensor device with two components: (1) the finger-tip component on
the upper-left and (2) the mouth component on the upper-right. 7

2.2 Sample cardiac and respiratory data from the device. 8
2.3 Sample reconstructed breathing signal which has ten peaks. 13
2.4 The reconstructed signal from Figure 2.3 with detected peaks using Al-

gorithm 1. 15

3.1 Comparing time and frequency domain of a discrete signal. The figure on
the top shows a discrete signal in time domain which is a mixture of two
sine waves with frequencies 50 Hz and 90 Hz with amplitudes 0.7 and 1,
respectively, and some Gaussian noise. The figure on the bottom shows
the same signal in frequency domain. 18

3.2 Ideal low-pass filter frequency response 20
3.3 Frequency responses associated to some other common low-pass filters. 20
3.4 Filtered and amplitude-scaled LED signals compared to the breathing

signal. 21
3.5 Average of filtered and amplitude-scaled LED signals compared to the

breathing signal. 22
3.6 Segregating columns into evens and odds (Figure inspired from [7]). . . 30
3.7 Divide-and-conquer (Figure inspired from [7]). 31

4.1 The feature vector corresponding to time t consists of down-sampled val-
ues of LED signals at times {t, t− l, t− 2l, , t− (k − 1)l}. 44

4.2 The original and filtered LED signals using the moving average with
window of 24 samples. 49

4.3 The original and filtered breathing signal using the moving average with
window of 24 samples. 50

A.1 Comparing the reconstructed breathing signals on human subject 1. . . 66
A.2 Comparing the reconstructed breathing signals on human subject 2. . . 67
A.3 Comparing the reconstructed breathing signals on human subject 3. . . 68
A.4 Comparing the reconstructed breathing signals on human subject 4. . . 69

v

A.5 Comparing the reconstructed breathing signals on human subject 5. . . 70
A.6 Comparing the reconstructed breathing signals on human subject 6. . . 71

vi

List of Tables

5.1 Absolute loss of different algorithms and setting for all human subjects.
Note that filtering has the worst performance in all but one case. 56

5.2 Square loss of different algorithms and setting for all human subjects. . 56
5.3 Average performances of different algorithms and setting. 57

vii

Abstract

Breathing Rate Prediction Using Finger-Tip Sensor

by

Holakou Rahmanian

Personalized health-care is trending and individuals tend to wear sensors in order to

record their own health data. As a part of this trend, any redundancy in the data cap-

tured by wearable sensors must be exploited to reduce the number of devices one may

wear. In this thesis, we work with a device which senses breathing and pulse through

pressure tube and pulse oximetry, respectively. Extracting the dependency between

these two measurements, we approximately predict the breathing rate by first recon-

structing the breathing signal using the data coming from the finger-tip sensor, and

then detecting the peaks in the reconstructed signal. For breathing signal reconstruc-

tion, two different techniques are used: (1) applying low- and high-pass filters on the

pulse signal (2) training a neural network on a prepared dataset. Our experiments show

that neural networks have a better performance comparing to filters in reconstructing

the breathing signal, and consequently, predicting the breathing rate.

viii

To my parents

ix

Acknowledgments

I would like to thank all the reading committee members for their helpful comments and

feedback. I would like to thank my advisor Manfred Warmuth who not only introduced

me to the field of health informatics and the idea of personalized health-care, but also

supported me and gave me guidance during the work on this thesis. I would also like to

thank Matthew Guthaus for providing his sensor device, and Hunter Nichols for assisting

me to obtain measurement data. Moreover, many thanks to volunteers who participated

in my research to produce sensor data. And thanks to my friends and fellow graduate

students in CS, CE, and EE departments here at UCSC for their helpful comments

about my thesis.

x

Chapter 1

Introduction

1.1 Wearable Sensors and Personalized Healthcare

Regular exercising has become a part of almost everyone’s daily routine. Peo-

ple are now becoming increasingly more concerned about storing and analyzing their

personal records regarding their exercises and activities. They wear different sensors

which are mostly connected to their smart phones recording their health data. Tens of

sensors in the forms of wrist-let, chest strap, and others, have been designed to cap-

ture those data in a non-invasive manner. Hundreds of smart phone applications have

been developed to properly store and analyze data coming from various sensors. These

data and measurements might be heart beats and pulse, heart rate variation, number

of strides they took, distance they went, breathing rate, and etc.

In general, there is a huge trend of “personalized health-care.” Using various

1

wearable sensors and smart phone applications, people want to record their health data,

analyze them and perhaps share it with their physicians if needed.

1.2 Motivation: Exploiting Redundancy

For the purpose of personalized health-care, people are not willing to wear

several sensors; it is not only uncomfortable, but also may affect the recorded data itself

since it might be more invasive. Wearing some sensors can even interfere with activities

one may do. For instance, wearing a mask on face to capture breathing data may cause

a negative effect on performance of the respiratory system.

Therefore we are interested in reducing the number of wearable sensors to a

minimum. In order to do this, any possible redundancy and patterns among various

measurements of different sensors must be exploited. Once this is done, we are able

to capture the same measurements with fewer sensors. Thus our goal is to extract

measurements of a particular sensor using the data captured from other sensors.

1.3 Breathing Rate Prediction

Cardiac and respiratory data are the most essential real-time data for moni-

toring the health of an individual. Different wearable sensors can be used to monitor

these data streams. Heart beats and pulse are mostly sensed on the finger-tip, wrist or

chest area, while breathing is usually captured by accelerometer on the chest area, or

2

sensing pressure on the mouth and/or nose.

In this thesis, we work with a device [10] which senses the breathing signal

through a pressure tube and captures the pulse through a finger-tip sensor. Our central

goal is to predict the breathing rate using the pulse signal in order to eliminate redun-

dancy. We call this the breathing rate prediction problem. Since the finger-tip sensor

seems to capture respiratory-related data in addition to the pulse, we are able to extract

the breathing rate — verified by the pressure sensor — out of the data coming from the

finger-tip sensor.

To predict the breathing rate, we first reconstruct the breathing signal using

the data coming from the finger-tip sensor, then we detect the peaks of the reconstructed

signal each of which denotes an occurrence of a breath. In order to reconstruct the

breathing signal, we take two different approaches. In the first approach, we treat this

reconstruction task as a digital signal processing problem and apply low- and high-pass

filters in order to zero out the unrelated frequencies. This lets us obtain the approxi-

mate breathing signal and consequently breathing rate. In the second approach we use

machine learning techniques and consider the breathing signal and the data from the

finger-tip sensor as the target value and feature vector, respectively. Applying Neural

Networks, we approximately predict the breathing signal from which the breathing rate

can be extracted. Our experiments show that neural networks have a better perfor-

mance comparing to filters in reconstructing the breathing signal, and consequently,

3

predicting the breathing rate.

1.4 Related Work

Extracting the respiratory signal from the measurements captured from differ-

ent non-invasive sensors has been an interesting problem to solve since a few decades

ago. The measurements, however, are mostly coming from the fairly advanced sensors

in hospitals and away from personalized health-care and simple wearable devices. Also

it seems that all of the previous works only use signal processing techniques (mostly

filtering) to obtain the breathing signal and/or rate. Despite the recent wide usage

of machine learning in health-care informatics [8], apparently there is still no machine

learning approach for the breathing rate prediction problem. Unlike simple signal pro-

cessing approaches, machine learning models are able to adapt to the data.

Different approaches have been proposed to extract the respiratory signal out

of ECG measurements using techniques in signal processing and in particular filtering

[14, 15, 18]. There are works in which the breathing signal is reconstructed from EBI

[16], and PPG and IP [13] measurements again using only signal processing algorithms

and techniques. A more related work to this thesis can be found in [20], in which the

breathing rate is approximated by counting the number of peaks in LED signals from

the pulse oximetry.

4

The rest of this thesis is organized as follows. In Chapter 2, we introduce

and define the breathing rate prediction problem. In Chapter 3, we discuss applying

filtering as an approach to solve this problem and also present the real-time setting for

ideal filters to perform. Chapter 4 explores a machine learning approach towards the

respiratory signal prediction problem and uses neural networks trained with a suitable

dataset which was extracted from the signals. Finally, in Chapter 5 we compare the

performances of the two approaches, and we conclude in Chapter 6.

5

Chapter 2

The Breathing Rate Prediction Problem

In this chapter, we start by describing the sensor device and see what types of

data it generates. Then we define the breathing rate prediction problem and decompose

it into two components. First, predicting the breathing signal, and second, detecting

peaks in the reconstructed signal in order to predict the breathing rate.

2.1 The Sensor Device

In this thesis, we work with a device [10] (see Figure 2.1) which consists of

two components and provides two synchronized sources of data with a shared sampling

frequency of 20 Hz:

1. Fingertip Component: This component, which is shown in the upper-left of

Figure 2.1, goes on a finger-tip of the human subject. It consists of two LEDs (red

and infra-red) and for each LED it indirectly measures the portion of the beam

6

Figure 2.1: The sensor device with two components: (1) the finger-tip component on
the upper-left and (2) the mouth component on the upper-right.

that goes through the finger in terms of a voltage output. This component mainly

senses the pulse [11].

2. Mouth Component: This component, which is shown in the upper-right of

Figure 2.1, is a tube that goes into the mouth of the human subject. It contains

a pressure sensor that measures the pressure caused by breathing in mmHg. This

component mainly senses the breathing signal.

7

Time (s)
0 10 20 30 40 50 60 70

P
re

s
s
u
re

 (
m

m
H

g
)

-4

-3

-2

-1

0

1

2

3

4
Pressure Signal

Time (s)
0 10 20 30 40 50 60 70

V
o
lt
a
g
e
 (

V
)

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
The LED Signals

LED 1
LED 2

Figure 2.2: Sample cardiac and respiratory data from the device.

2.2 The Data

The data that we worked on consists of various sets of one-minute synchronized

measurements of the two sensors on six different human subjects who remained seated

and breathed normally entirely through their mouth. We performed 3 one-minute trials

on each volunteer in order to obtain training and test set data. Figure 2.2 plots a sample

measurement sensed by different components of the sensor device.

As one can observe, the pressure sensor measures the breathing signal as a

8

sinusoidal signal with some noise. The positive and negative values of pressure indicate

exhalation and inhalation in the breathing, respectively.

Interestingly enough, the finger-tip component senses a mixture of cardiac and

respiratory data. Concretely, it not only measures the pulse (the high frequency part),

but also the measurements are affected by a lower frequency signal which seems to be

related to breathing.

2.3 The Breathing Rate Prediction Problem

Our goal is to approximately predict the the breathing rate in real-time 1 by

using the data from the finger-tip component (i.e., the LED signals). Note that breath-

ing rate is defined as the number of breaths (exhalation or inhalation) in one minute.

Thus in order to predict the rate at any time t, we need to detect all the breaths in a time

interval ending at t. In this thesis, we consider occurrence of an exhalation as one breath.

We predict the breathing rate in two steps. First, we reconstruct the breathing

signal (signal reconstruction) using the LED signals. Then, having reconstructed the

breathing signal, we detect the occurrences of exhalations throughout the signal (peak

detection). Notice that we want to do this online; meaning that at each time, as we

receive data from the finger-tip sensor, we predict the value of the breathing signal

in that time and decide whether an exhalation has occurred. Each of these steps are

1To do this task in online manner, we may take some time first for calibration or learning phase.

9

discussed separately in the next two subsections.

2.3.1 Signal Reconstruction

Given the data from the fingertip sensor, we want to reconstruct the breathing

signal. Note that since our ultimate goal is to find the breathing rate, we just need to

reconstruct the signal sufficiently well so that there is a synchronized one-to-one corre-

spondence between the peaks of the original and reconstructed signal. In other words,

it does not matter to us if the reconstructed signal is shifted and/or scaled in amplitude

comparing to the original signal.

In this thesis, we apply different techniques and algorithms to reconstruct the

signal. In order to evaluate the performances of different approaches and algorithms,

we need to use a loss function that can reflect our goal in reconstruction. As mentioned

earlier, we are not concerned with the amplitude and baseline of the reconstructed

signal. Thus we use the signal error function (SEF) which is defined as below:

Definition 1. Let f and g be two signal functions defined over X = {x1, . . . , xn}. Also

let f̄ and ḡ be the mean value of f and g over X, respectively. Concretely:

f̄ = Ex∈X [f(x)], ḡ = Ex∈X [g(x)]

Given the mean value of the signals, let f̃ and g̃ be the zero mean signals obtained from

centering f and g, respectively. That is:

∀ x ∈ X f̃(x) = f(x)− f̄ , g̃(x) = g(x)− ḡ

10

Then the Signal Error Function (SEF) of the two signals is defined as the

discrepancy between f̃ and the best matching g̃ upto amplitude scaling, which is:

SEFL(f, g) = min
a∈R+

∑
x∈X

L(f̃(x), a · g̃(x))

where L : R2 → R+.

In Definition 1, we are mainly interested in two specific types of L: (1) absolute

loss (i.e., L(x, y) = |x− y|) and (2) square loss (i.e., L(x, y) = (x− y)2). Using square

loss has this advantage that the minimizing a in Definition 1 has an analytic solution.

Lemma 1. If the square loss is used in Definition 1, then the “a” which minimizes the

discrepancy between f̃ and the best matching g̃ upto amplitude scaling in Definition 1

can be found as below:

a∗ =

∑
x∈X f̃(x) · g̃(x)∑

x∈X(g̃(x))2

Proof.

J(a) =
∑
x∈X

(f̃(x)− a · g̃(x))2

=
∑
x∈X

(f̃(x))2 + a2 · (g̃(x))2 − 2a · f̃(x) · g̃(x)

=

(∑
x∈X

(g̃(x))2

)
· a2 − 2

(∑
x∈X

f̃(x) · g̃(x)

)
· a +

∑
x∈X

(f̃(x))2)

In order to find the minimizing a, we set d J
d a = 0. Thus:

d J

d a
= 2

(∑
x∈X

(g̃(x))2

)
· a− 2

(∑
x∈X

f̃(x) · g̃(x)

)
= 0

−→ a∗ =

∑
x∈X f̃(x) · g̃(x)∑

x∈X(g̃(x))2

11

However, the square loss has one major flaw which is over-punishing outliers

in the data by squaring their associated error. On the other hand, absolute loss is less

sensitive to outliers, but the minimizing a in Definition 1 cannot be found in closed form

analytically. Nevertheless, the function
∑

x∈X L(f̃(x), a · g̃(x)) will be a one-dimensional

convex piece-wise linear function and therefore a linear program which can be minimized

through simplex-based methods.

In this thesis, we take two different approaches for signal reconstruction. In

the first approach, we use filters to throw away unrelated frequencies so that we can

merely have the respiratory-related frequencies in our signal (Chapter 2). In the second

approach, we see the problem as a regression problem in machine learning. We prepare

datasets (feature vectors with target values) and feed them to neural network (Chapter

3).

2.3.2 Peak Detection

Once the signal is reconstructed, we want to find the peaks (i.e., the occur-

rences of exhalation) in an online fashion. Peak detection may not be straightforward

due to the fact that the reconstructed signal is not usually “nice.” See Figure 2.3. Ob-

serve that the reconstructed signal may also contain a significant amount of noise. In

addition, the reconstructed signal may not look like a wave with a fixed amplitude.

We use Algorithm 1 to detect all peaks. This algorithm belongs to the family

12

Figure 2.3: Sample reconstructed breathing signal which has ten peaks.

of moving average based filtering techniques which are common in detecting simple pat-

terns in the signal [6]. Basically, at each point we find out whether the signal is going

“up” or “down.” Once we realize that the signal is going “up”, the moment that the

signal changes to go “down”, we declare a peak 2.

The algorithm works with two window parameters (w1 and w2) and a thresh-

old parameter (C). First, for each point, it checks whether the value of the point is less

or greater than the average value of a window of w1 next values. This indicates a weak

“up” or “down.” Note that averaging out the values of the signal has the same behavior

as applying a low-pass filter [17]. This will help us getting rid of noise which are mostly

higher frequency waves within the signal.

2Essentially, “up” and “down” indicate positive and negative derivative of the smoothed signal,
respectively, and a“peak” is where the slope of the smoothed signal is equal to zero.

13

Algorithm 1 Linear Algorithm for Finding All Peaks in a Signal

procedure FindPeaks(f [1 . . . n], w1, w2, C)

Status ← “None”

Peaks ← ∅

for i ∈ {1, 2, . . . , n} do

I(i)← Sgn(Average(f [i + 1, i + 2, . . . , i + w1])−f [i])

if
∑i

j=i−w2
I(j) > C then

Status ← “Up”

end if

if
∑i

j=i−w2
I(j) < −C then

if Status = “Up” then

Peaks ← Peaks ∪{i− C}

end if

Status ← “Down”

end if

end for

return Peaks

end procedure

14

Figure 2.4: The reconstructed signal from Figure 2.3 with detected peaks using Algo-
rithm 1.

Now a strong “up” or “down” is identified by a C-majority of a window of w2

previous values. Concretely, if the number of weak “up”s are C more than the number

of weak “down”s in the previous window, then we call it a strong “up”. Strong “down”s

are similarly identified.

Notice that Algorithm 1 can work in real-time. In other words, in order to

apply the algorithm, you do not need to pass the entire signal at once; it can receive

the values of the signal point by point as an input. Figure 2.4 shows the performance

of Algorithm 1 on the signal in Figure 2.3 with parameters w1 = 30, w2 = 20, C = 10.

Note that even though, the signal is considerably noisy, Algorithm 1 is still able to

detect the approximate locations of the peaks throughout the signal.

15

Chapter 3

Signal Reconstruction by Filtering

Every signal consists of waves with various frequencies and amplitudes. By

using Fourier series, any periodic function can be decomposed into the sum of finite or

infinite set of simple sine waves. In particular, given a discrete signal in time domain,

we can find the components of the signal in the frequency domain which is basically the

spectrum of frequencies and their amplitudes that are constructing the signal. Using

discrete Fourier transform (DFT) and its inverse, we can go from time domain to fre-

quency domain and vice versa, respectively [17] (See Figure 3.1). Concretely, if x is a

discrete signal of length N and X is its associated frequency spectrum (which also has

the length N), then:

DFT: ∀ k ∈ {0, . . . , N − 1} Xk =
N−1∑
n=0

ωknxn

Inverse-DFT: ∀n ∈ {0, . . . , N − 1} xn =
1

N

N−1∑
k=0

ω−knXk

16

in which ω = e−
2πi
N . Assuming that x and X are represented by N × 1 column vectors,

DFT and its inverse can be also shown in matrix-vector multiplication form:

DFT:



X0

X1

...

XN−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2


︸ ︷︷ ︸

N×N



x0

x1

...

xN−1



Inverse-DFT:



x0

x1

...

xN−1


=

1

N



1 1 · · · 1

1 ω−1 · · · ω−(N−1)

...

1 ω−j · · · ω−j(N−1)

...

1 ω−(N−1) · · · ω−(N−1)2


︸ ︷︷ ︸

N×N



X0

X1

...

XN−1



DFT and its inverse are done in O(N2) if we use naive matrix-vector multi-

plication procedure which is inefficient. However, by using Fast Fourier Transform [17],

they can be done in O(N logN).

In this chapter, we start by introducing filters in signal processing. Then

we discuss how applying filters can help us reconstructing the breathing signal, and

consequently predicting the breathing rate. Since we are interested in applying filters in

17

time (milliseconds)
0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2

3

4
Signal in Time Domain

Frequency (Hz)
0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Signal in Frequency Domain

Figure 3.1: Comparing time and frequency domain of a discrete signal. The figure on
the top shows a discrete signal in time domain which is a mixture of two sine waves
with frequencies 50 Hz and 90 Hz with amplitudes 0.7 and 1, respectively, and some
Gaussian noise. The figure on the bottom shows the same signal in frequency domain.

18

real-time, we also explore the setting for online filtering and online DFT. In particular,

we propose a novel and efficient algorithm for the latter called Fast Sliding Window

DFT.

3.1 Filters

In digital signal processing, filters [17] are used to remove a specific range of

frequencies out of a given signal. In particular, given a signal, low- and high-pass filters

allow frequencies below and beyond a given threshold to pass, respectively. In other

words, in filters, we zero out the unrelated frequencies in the frequency domain and find

the corresponding filtered signal in the time domain.

Concretely, the filters work as if a specific function is multiplied to the fre-

quency spectrum in the frequency domain so that certain frequencies are passed and

the rest of attenuated. For instance, the low-pass filter is basically multiplying the

function depicted in Figure 3.2 (which is known as the frequency response) with the

frequencies of the signal in the frequency domain.

As one can observe, this filter zeros out the frequencies beyond a certain thresh-

old and passes the frequencies below that. In many applications, the filter in Figure

3.2 (which is also known as the ideal filter) is hard to implement. Therefore, there are

different alternatives as approximations to ideal frequency response that can be used

19

Ideal Filter

Figure 3.2: Ideal low-pass filter frequency response

Butterworth Chebyshev Type I Chebyshev Type II

Figure 3.3: Frequency responses associated to some other common low-pass filters.

(See Figure 3.3).

3.2 Reconstructing the Breathing Signal

As discussed before, the finger-tip component of the device senses a mixture of

cardiac and respiratory signals. Since we want to extract and reconstruct the breathing

signal, we need to filter out unrelated frequencies including the pulse signal. Therefore

20

Time (s)
0 10 20 30 40 50 60 70

-6

-4

-2

0

2

4

6

Breathing Signal
LED 1 - Filtered
LED 2 - Filtered

Figure 3.4: Filtered and amplitude-scaled LED signals compared to the breathing signal.

given a range of respiratory frequency spectrum, we are able to extract the breathing

signal.

Depending on the population, we can use different range of respiratory fre-

quency spectrum. In our experiment, we assume that the breathing frequency falls into

0.1 to 0.5 Hz. This is 6 to 30 breathes per minute which is a very wide range and in

particular includes the typical respiratory rate for a healthy adult at rest [2].

Thus, assuming that the breathing signal is directly mixed within the data

measured by the finger-tip sensor, we can obtain the closest function to the respiratory

signal by filtering out the frequencies below 0.1 Hz and beyond 0.5 Hz from LED signals.

Note that this can be done by applying a low-pass filter with threshold 0.5 Hz and a

high-pass filter with threshold 0.1 Hz. See Figure 3.4.

As mentioned in the earlier chapters, there are two LEDs (red and IR) in the

21

Time (s)
0 10 20 30 40 50 60 70

-5

-4

-3

-2

-1

0

1

2

3

4

5

Breathing Signal
Averaged Filtered LEDs

Figure 3.5: Average of filtered and amplitude-scaled LED signals compared to the
breathing signal.

finger-tip component of the sensor. Both of these LEDs captures some information

about the respiratory signal. Thus we apply our filters to both LEDs and the final

breathing signal reconstruction will be obtained from averaging the two filtered LED

signals. See Figure 3.5.

In this thesis, we work with ideal filters for breathing signal reconstruction. It

turns out that using other filters like Butterworth does not give us the desired results

due to their approximate nature. Also notice that since our objective is to reconstruct

the breathing signal in real-time, we must be able to do this filtering in online fashion

despite the fact that DFT and most of filtering-related algorithms need the entire signal

offline as one batch of data. In the next section, we explore techniques that can make

the filtering algorithms online.

22

3.3 Online Window-Based Algorithms

The filtering algorithms and in particular the ideal filter only work offline which

means the entire signal must be given. By using a sliding window, these algorithms can

be made online. Concretely, we work with a sufficiently large window of N sampled

datapoints from the signal ending at the current time. In each iteration, the filtering

algorithm is applied to the current window. In other words, we approximate the output

of the algorithm given the entire signal by only focusing on the subset of N points of

the entire signal from the current window. Then, we shift the window forward and

reiterate. Observe that since the sampling frequency might be very high, in order to

achieve an efficient online algorithm, we may need to shift our sliding window by more

than one point. Throughout this section, we assume that we want to shift our window

by ∆ points.

In the remaining of this section, two online algorithms are represented that can

be used towards filtering out unrelated frequencies in this work. In the first algorithm,

we propose a O(N + N log ∆) procedure to find the DFT of the current window given

the DFT of previous window. As we will discuss in 3.3.2 in more details, finding the

DFT of the window is a sub-module of performing the ideal filtering process, as it must

followed by finding the inverse DFT. In other words, this algorithm does not perform

23

the entire ideal filtering process and gives us the frequency spectrum given the signal

in the time domain. Nevertheless, applying an efficient sliding window DFT algorithm

can expedite the ideal filtering process. The best algorithm in the literature [12] can do

this task in O(N∆) time complexity by successively shifting the window by one point

and finding its associated DFT each time (we will discuss it in 3.3.1 by addressing the

problem for ∆ = 1). In the second algorithm, we propose a setting in which the entire

filtering process can be done online in O(N∆) at each iteration given the filtered signal

from previous window. This means as long as ∆ = O(logN), we can use this technique

instead of doing FFT and Inverse-FFT from scratch for the window in each iteration.

3.3.1 Fast Sliding Window DFT

FFT is an algorithm to find Discrete Fourier Transform: given N equally

spaced samples from a signal, it outputs a spectrum of N complex sinusoids ordered by

their frequencies whose combination results in the same sample values. As we discussed

earlier in this chapter, Discrete Fourier Transform is essentially a multiplication of a

N ×N matrix and a N -dimensional vector:

24



X0

X1

...

XN−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2


︸ ︷︷ ︸

N×N



x0

x1

...

xN−1



in which ω = e−
2πi
N and x = [x0, x1, . . . , xN−1]T . FFT does this multiplication in

O(N logN) using divide and conquer strategy [7].

Given the DFT of a window of N samples, we are interested in finding the

DFT of the shifted window by ∆ samples efficiently. This problem is called sliding

window DFT. To this purpose, we propose Fast Sliding Window DFT algorithm which

is a divide-and-conquer algorithm inspired by FFT itself and solves the problem in

O(N + N log ∆) time complexity.

First we focus on ∆ = 1 and prove that sliding window DFT can be done in

O(N) time [12]. The problem is to find:

25



X
(1)
0

X
(1)
1

...

X
(1)
N−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2





x1

x2

· · ·

xN



given:



X
(0)
0

X
(0)
1

...

X
(0)
N−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2





x0

x1

· · ·

xN−1



Observe that for all k ∈ {0, 1, . . . , N − 1}:

X
(1)
k =

N−1∑
n=0

ωknxn+1

= ω−k
N−1∑
n=0

ωk(n+1)xn+1

= ω−k
N∑

n=1

ωknxn

= ω−k (X
(0)
k − x0 + ωkNxN)

= ω−k (X
(0)
k − x0 + xN)

26

−→ X
(1)
k = ω−k (X

(0)
k − x0 + xN) (3.1)

where the last equation follows from the fact that ωN = 1. If we do this update for all

N indices of X, then the sliding window DFT can be done in O(N) time.

Now we assume that 1 < ∆ < N and both ∆ and N are powers of two. We

show that sliding window DFT can be done in O(N log ∆) time. The task is to find:



X
(∆)
0

X
(∆)
1

...

X
(∆)
N−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2





x∆

x∆+1

· · ·

xN+∆−1



given:



X
(0)
0

X
(0)
1

...

X
(0)
N−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2





x0

x1

· · ·

xN−1



Observe that for each k ∈ {0, 1, . . . , N − 1}, using Equation 3.1 repeatedly, we can

27

obtain:

X
(∆)
k = ω−k (X

(∆−1)
k − x∆−1 + xN+∆−1)

= ω−k ((ω−k (X
(∆−2)
k − x∆−2 + xN+∆−2))− x∆−1 + xN+∆−1)

= ω−2kX
(∆−2)
k + ω−2k(xN+∆−2 − x∆−2) + ω−k(xN+∆−1 − x∆−1)

· · ·

= ω−∆kX
(0)
k +

∆−1∑
n=0

ω−(∆−n)k(xN+n − xn)

= ω−∆k

(
X

(0)
k +

∆−1∑
n=0

ωnkx′n

)

where in the last line x′n = xN+n − xn for all n ∈ {0, . . . ,∆− 1}. Note that the above

expression can also be written as below:

X
(∆)
k = ω−∆k


X

(0)
k +

[
1 ωk · · · ωk(∆−1)

]


x′0

x′1

...

x′∆−1





28

Therefore:



X
(∆)
0

X
(∆)
1

...

X
(∆)
N−1


︸ ︷︷ ︸

N×1

=



1

ω−∆

ω−2∆

· · ·

ω−(N−1)∆


︸ ︷︷ ︸

N×1

⊗





X
(0)
0

X
(0)
1

...

X
(0)
N−1


︸ ︷︷ ︸

N×1

+



1 1 · · · 1

1 ω · · · ω∆−1

...

1 ωj · · · ωj(∆−1)

...

1 ωN−1 · · · ω(N−1)(∆−1)


︸ ︷︷ ︸

N×∆



x′0

x′1

...

x′∆−1


︸ ︷︷ ︸

∆×1


︸ ︷︷ ︸

N×1

In which ⊗ is element-wise vector multiplication. Observe that once we find the matrix-

vector multiplication (the N×∆ matrix and the ∆-dimensional vector) in the expression

above, we can find the RHS in O(N) time since it only consists of element-wise vec-

tor multiplication and addition. From now on, we focus on finding the matrix-vector

multiplication in an efficient way, i.e., O(N log ∆). Thus our task is to compute the

following:
M(N,∆)︷ ︸︸ ︷

1 1 · · · 1

1 ω · · · ω∆−1

...

1 ωj · · · ωj(∆−1)

...

1 ωN−1 · · · ω(N−1)(∆−1)


︸ ︷︷ ︸

N×∆

x′︷ ︸︸ ︷

x′0

x′1

...

x′∆−1


︸ ︷︷ ︸

∆×1

29

As one can notice, this problem is similar to the original DFT problem except

the fact that we are dealing with a rectangular matrix (of size N × ∆) instead of a

square matrix (of size N × N). We apply the similar divide and conquer technique

that is used in FFT. In fact, the potential for using divide and conquer strategy in this

matrix-vector multiplication becomes apparent when M(N,∆)’s columns are segregated

into evens and odds (See Figure 3.6).

Figure 3.6: Segregating columns into evens and odds (Figure inspired from [7]).

Note that the entries in the bottom half of the matrix are simplified using

ωN/2 = −1 and ωN = 1. Notice that the top left N/2 × N/2 submatrix is M(N2 ,
∆
2),

as is the one on the bottom left. And the top and bottom right submatrices are almost

the same as M(N2 ,
∆
2), but with their jth rows multiplied through by ωj and −ωj , re-

spectively (See Figure 3.7).

Thus the product of M(N,∆) with vector (x′0, x
′
1, . . . , x

′
∆−1)T can be expressed

in terms of two products: the product of M(N/2,∆/2) with (x′0, x
′
2, . . . , x

′
∆−2)T and

with (x′1, x
′
3, . . . , x

′
∆−1)T . Therefore, assuming that T (N,∆) is the time complexity of

30

Figure 3.7: Divide-and-conquer (Figure inspired from [7]).

the algorithm with window of length N and shifting parameter ∆, we have:

T (N,∆) = 2T (N/2,∆/2) + O(N)

Now in order to find the time complexity, we obtain:

T (N,∆) = 2T (N/2,∆/2) + cN = 2 (2T (N/4,∆/4) + cN/2) + cN

= 22 T (N/22,∆/22) + 2cN

= · · ·

= 2k T (N/2k,∆/2k) + kcN

Replacing k = log ∆, we have:

T (N,∆) = ∆× T (N/∆, 1) + cN log ∆

Note that for all A, T (A, 1) = O(A), since the matrix product will be just a

31

scalar multiplication. Thus:

T (N,∆) = ∆× T (N/∆, 1) + cN log ∆

= ∆× c′ (N/∆) + cN log ∆

= c′N + cN log ∆

= O(N log ∆)

3.3.2 Online Sliding Window Ideal Filtering

In this thesis, we are interested in specific type of ideal filtering. Given a signal,

suppose we want to apply ideal low- and high-pass filters in order to maintain only the

frequencies in an specific interval [fmin, fmax] and zero out the rest of frequencies. Let x

and y be the original and filtered signal, respectively, both of size N . Also denote their

associated frequency spectrum by X and Y , respectively. Observe that, if we want to

do this task offline, then this can be done in O(N logN) time:

1. Using FFT, go from x (time domain) to X (frequency domain): O(N logN) time

2. Zero out the unrelated frequencies from X to obtain Y : O(N) time

3. Using Inverse-FFT, go from Y (frequency domain) to y (time domain): O(N logN)

time

Now consider the ideal filtering problem in online fashion meaning that the

equally spaced samples are being received in real-time. In order to ideally filter the

signal online, one can use a sufficiently large window of samples – say N – and as this

32

window is shifted forward, the ideally filtered signal of the given window can be found

in each iteration. Using the three steps explained above for each iteration, we can find

the filtered signal in each window in O(N logN) once the window is shifted.

Before going to sliding window ideal filtering, first we collapse the three steps

mentioned earlier into one. Although, the collapsed form is much less efficient for batch

version (O(N2) instead of O(N logN)), it will introduce a way to do the task in online

fashion through a sliding window. Assuming w = e−
2πi
N , we have:



X0

X1

...

XN−1


=



1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2


︸ ︷︷ ︸

N×N



x0

x1

...

xN−1



Assume that our desired frequency interval [fmin, fmax] corresponds to the

indices a to b in X. Therefore:

Y︸︷︷︸
N×1

= 1[a,b]︸︷︷︸
N×1

⊗ X︸︷︷︸
N×1

33

in which ⊗ is element-wise vector multiplication and 1[a,b] is a column vector of size N

whose ith element is one if a ≤ i ≤ b and zero otherwise. Finally:



y0

y1

...

yN−1


=

1

N



1 1 · · · 1

1 ω−1 · · · ω−(N−1)

...

1 ω−j · · · ω−j(N−1)

...

1 ω−(N−1) · · · ω−(N−1)2


︸ ︷︷ ︸

N×N



Y0

Y1

...

YN−1



Now putting everything together we can write y in terms of x:

34



y0

y1

...

yN−1


=

1

N



1 1 · · · 1

1 ω−1 · · · ω−(N−1)

...

1 ω−j · · · ω−j(N−1)

...

1 ω−(N−1) · · · ω−(N−1)2


︸ ︷︷ ︸

N×N

×



1[a,b] ⊗





1 1 · · · 1

1 ω · · · ωN−1

...

1 ωj · · · ωj(N−1)

...

1 ωN−1 · · · ω(N−1)2


︸ ︷︷ ︸

N×N



x0

x1

...

xN−1







35

=
1

N



1 1 · · · 1

1 ω−1 · · · ω−(N−1)

...

1 ω−j · · · ω−j(N−1)

...

1 ω−(N−1) · · · ω−(N−1)2


︸ ︷︷ ︸

N×N



0 0 · · · 0

...

0 0 · · · 0

1 ωa · · · ωa(N−1)

...

1 ωj · · · ωj(N−1)

...

1 ωb · · · ωb(N−1)

0 0 · · · 0

...

0 0 · · · 0


︸ ︷︷ ︸

N×N︸ ︷︷ ︸
N×N



x0

x1

...

xN−1



−→



y0

y1

...

yN−1


=

1

N



1 · · · 1

ω−a · · · ω−b

...

ω−aj · · · ω−bj

...

ω−a(N−1) · · · ω−b(N−1)


︸ ︷︷ ︸

N×(b−a+1)



1 ωa · · · ωa(N−1)

...

1 ωj · · · ωj(N−1)

...

1 ωb · · · ωb(N−1)


︸ ︷︷ ︸

(b−a+1)×N

︸ ︷︷ ︸
N×N



x0

x1

...

xN−1



36

Define P as the matrix multiplication below:

P =



1 · · · 1

ω−a · · · ω−b

...

ω−aj · · · ω−bj

...

ω−a(N−1) · · · ω−b(N−1)


︸ ︷︷ ︸

N×(b−a+1)



1 ωa · · · ωa(N−1)

...

1 ωj · · · ωj(N−1)

...

1 ωb · · · ωb(N−1)


︸ ︷︷ ︸

(b−a+1)×N

︸ ︷︷ ︸
N×N

We can find the value of an arbitrary element in P which is a N ×N matrix.

Let Pjk be the element of matrix P located at row j and column k for arbitrary 0 ≤

k, j ≤ N − 1 1. Hence, we can obtain:

Pjk =

[
ω−aj · · · ω−bj

]

ωak

...

ωbk

 =
b∑

r=a

ω(k−j)r

−→ Pjk =


b− a + 1 j = k

ω(k−j)(b+1)−ω(k−j)a

ωk−j−1
k 6= j

Note that P is a structured matrix. Concretely:

Pjk = fj−k, in which fq =


b− a + 1 q = 0

ωq(b+1)−ωqa
ωq−1 q 6= 0

1Here for simplicity, we use {0, 1, . . . , N − 1} for indexing the rows and columns of P

37

Observe that since 0 ≤ k, j ≤ N −1, thus −N +1 ≤ q ≤ N −1. Also for q 6= 0,

since ω is a Nth unit root, we have:

fN+q =
ω(N+q)(b+1) − ω(N+q)a

ω(N+q) − 1

=
ωq(b+1)ωN(b+1) − ωqaωNa

ωqωN − 1

=
ωq(b+1) − ωqa

ωq − 1
= fq

This means that the subscript of f is significant upto modulo N . Therefore:

P =



f0 fN−1 fN−2 · · · f2 f1

f1 f0 fN−1 · · · f3 f2

f2 f1 f0 · · · f4 f3

...
...

fN−2 fN−3 fN−4 · · · f0 fN−1

fN−1 fN−2 fN−3 · · · f1 f0


︸ ︷︷ ︸

N×N

Therefore we can perform the ideal filtering in one collapsed O(N2)-step of

y = 1
N Px in which P is computed as above. Concretely:

∀k ∈ {0, 1, . . . , N − 1} yk =
1

N

N−1∑
j=0

fk−j xj

Now that we have obtained the collapsed step for ideal filtering, let us focus

on online sliding window ideal filtering. Given the ideally filtered signal of a window of

N samples, we are interested in finding the ideally filtered signal of the shifted window

by ∆ samples efficiently. This problem is called sliding window ideal filtering. To this

38

purpose, we propose a method which uses the collapsed step for ideal filtering and is

able to do it online in O(N∆) time complexity.

First we focus on ∆ = 1 and prove that sliding window ideal filtering can be

done in O(N) time. The problem is to find:

y
(1)
0

y
(1)
1

...

y
(1)
N−1


=

1

N
P



x1

x2

...

xN


Given: 

y
(0)
0

y
(0)
1

...

y
(0)
N−1


=

1

N
P



x0

x1

...

xN−1


Observe that for all k ∈ {0, 1, . . . , N − 1}:

y
(1)
k =

1

N

N−1∑
j=0

fk−jxj+1 =
1

N

N∑
j=1

fk−j+1xj

=
1

N

N−1∑
j=0

fk−j+1xj

− 1

N
fk+1x0 +

1

N
fk−N+1xN

=
1

N

N−1∑
j=0

f(k+1)−jxj

+
1

N
fk+1(xN − x0) (fk+1−N = fk+1)

= y
(0)
k+ +

1

N
fk+1(xN − x0)

−→ y
(1)
k = y

(0)
k+ +

1

N
fk+1(xN − x0) (3.2)

39

In which k+ is defined to be k + 1 modulo N . If we do this update for all N indices,

then the sliding window ideal filtering can be done in O(N).

Now we assume that 1 < ∆ < N . Then the task of sliding window ideal

filtering is to find: 

y
(∆)
0

y
(∆)
1

...

y
(∆)
N−1


=

1

N
P



x∆

x∆+1

...

xN+∆−1


Given: 

y
(0)
0

y
(0)
1

...

y
(0)
N−1


=

1

N
P



x0

x1

...

xN−1


Observe that for each k, using Equation 3.2 repeatedly, we can obtain:

y
(∆)
k = y

(∆−1)
k+ +

1

N
fk+1(xN+∆−1 − x∆−1)

= y
(∆−2)
k++ +

1

N
fk+2(xN+∆−2 − x∆−2) +

1

N
fk+1(xN+∆−1 − x∆−1)

...

= y
(0)

k∆+ +
1

N

∆∑
j=1

fk+j(xN+∆−j − x∆−j)

40

In which k∆+ is defined to be k + ∆ modulo N . Note that the equation above can be

also be written as below:

y
(∆)
k = y

(0)

k∆+ +
1

N

[
fk+∆ fk+∆−1 · · · fk+1

]


xN − x0

xN+1 − x1

...

xN+∆−1 − x∆−1


Therefore:

y(∆) = y
(0)
∆+ +

1

N



f∆ f∆−1 f∆−2 · · · f2 f1

f∆+1 f∆ f∆−1 · · · f3 f2

f∆+2 f∆+1 f∆ · · · f4 f3

...
...

fN+∆−2 fN+∆−3 fN+∆−4 · · · f0 fN−1

fN+∆−1 fN+∆−2 fN+∆−3 · · · f1 f0


︸ ︷︷ ︸

N×∆



xN − x0

xN+1 − x1

...

xN+∆−1 − x∆−1


︸ ︷︷ ︸

∆×1

In which y
(0)
∆+ is y(0) which is circularly shifted ∆ units upward. So in order

to find y(∆), you need to do shifting on y(0) and do a multiplication between a N ×∆

matrix and a ∆ dimensional vector which costs O(N) and O(N∆), respectively. Thus

we can find the ideally filtered signal in the new window given the ideally filtered signal

in the previous one in O(N∆) time complexity.

41

Chapter 4

Signal Reconstruction by Neural

Networks

As mentioned in earlier chapters, in order to predict the breathing rate, we

first reconstruct the breathing signal from LED signals, then detect the peaks of the

reconstructed breathing signal each of which denotes an occurrence of a breath. In pre-

vious chapter, we studied the breathing signal reconstruction using filtering. Another

way of reconstructing the breathing signal using LED signals is to use machine learning

algorithms, i.e., to see the problem as a regression problem. In this approach, we can

look the LED signals as the feature vectors and the breathing signal as the target value.

In this chapter, we start with how to prepare proper dataset for this regression

problem. Then we discuss how the breathing signal reconstruction can be done using

neural networks. After that we discuss the regularization techniques being used in

42

our model in order to avoid over-fitting. Moreover, we also explore two additional

techniques as a pre-processing step namely applying moving average filters and using

denoising auto-encoders.

4.1 Preparing the Dataset

In order to have the settings of a regression problem, we need to prepare a

proper dataset as a pre-processing step. Each point in the dataset consists of a feature

vector extracted from the LED signals, and a target value which is basically the value of

the breathing signal. Concretely, for the t-th sample value from the breathing signal (t

is sufficiently large), we identify 2k features — k features from each LED. We consider

the sample values of LEDs at times {t, t− l, t− 2l, , t− (k− 1)l} as features (See Figure

4.1). In other words, given the point to predict in breathing signal, we first down-sample

l points to one in both LED signals and then take the last k samples ending at current

time from each LED signal as features.

First, notice that this dataset is online-friendly. Concretely, once the model is

trained, given a real-time stream of LED signals, it is able to do prediction in online

fashion after certain time which is t ≥ (k − 1)× l + 1.

4.1.1 Choosing k and l

As mentioned before, l indicates the amount of down-sampling and k is the

number of down-sampled data. Observe that l can be proportionate on sampling fre-

43

Figure 4.1: The feature vector corresponding to time t consists of down-sampled values
of LED signals at times {t, t− l, t− 2l, , t− (k − 1)l}.

44

quency. Also notice that k and l must be tuned in a way that:

• k × l is a sufficiently large window of last sample values of LED signals.

• l is small enough so that the down-sampling still captures periodicity of both LED

signals.

• k is small enough so that we avoid high dimensional space and “curse of dimen-

sionality”

In this thesis, we used k = 12 and l = 16. Note that the base sampling

frequency from the device is 20 Hz, and consequently, the time between two consecutive

samples is 50 ms. This means that to extract the features for each datapoint, we pick

a sample from both LED signals every 800ms 1 focusing on a window of 8.8 seconds 2

ending at current time.

4.2 Neural Network for Reconstruction

In order to solve this regression problem, we use neural networks [4]. The

main reason that we use neural network is the fact that we need to extract non-linear

high-level features from the raw data for which there is no straightforward approach to

find. These high-level features can be different characteristics of the breathing signal

at a given time like the amplitude and phase of the signal. The neurons in the neural

network extract those features automatically through the learning phase.

1800 = 16× 50
28800 = (12− 1)× 16× 50

45

In this thesis, we used shallow neural networks with one or two hidden layers

with limited number of nodes. Due to limitation on the size of the data, any excess

number of parameters and complexity of the model will lead to over-fitting. Also using

too few neurons may under-fit and fail to capture the essence of the data. In particular

we tried one hidden layer with 9 neurons, and two hidden layers with 6 and 3 neurons.

4.3 Regularization

Preliminary experiments showed that our model has low training error, but it

has a relatively poor performance on the test set on most cases. It seems that since the

training sets are not large, our model is prone to over-fitting. To avoid over-fitting, we

used several regularization techniques[4]:

1. Early Stopping: This procedure is used to control the complexity of a neural

network. In training the networks, optimization algorithms are used to decrease

the error function through iterations. This error function is defined with respect to

the training set which usually causes over-fitting. However, instead of training set,

we use an independent set of data, called a validation set, based on which we keep

track of the error function. This error function often decreases at first and then

increases after a certain number of iterations indicating that the model starts to

overfit. Thus, in order to have network with good generalization performance, the

training can be stopped when the error is minimum with respect to the validation

46

set.

2. Adding Regularizer to the Cost Function: Another way to prevent the network

from becoming too complex, is to add regularizer terms to the error function.

In this case, we add the mean squared of the weights to the error function as a

regularizer. With this regularizer the weights can not get very large and make

the model complex, and consequently, minimizing the error function will keep the

model simple. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [1] is used

to minimize the regularized error function. BFGS is a second-order method which

approximates Newton’s algorithm to solve unconstrained non-linear optimization

problems.

3. Training Multiple Times: The error function in in the neural network has com-

binatorial number of local minima. Depending on which local minimum we have

obtained, the performance of the network on the unseen data might be very dif-

ferent. Therefore training only one single network may have poor accuracy. Thus

in our model, we train the neural network multiple times (10 times) — each time

with different random initialization — and use the average of the trained network

to predict on the test set.

4.4 Additional Techniques

In addition to the regularization techniques mentioned earlier, we also used

some more procedures so that the model has a better generalization performance. Here

47

we introduce filtering and auto-encoders, both of which are pre-processing and pre-

training steps.

4.4.1 Moving Average

As we have seen in previous chapters, each LED signal is a mixture of breath-

ing and pulse signal. In this case, the pulse signal is the “noise” which has a higher

frequency. As a pre-processing step, we can eliminate the pulse signal from the in-

put LED signals before preparing the dataset (discussed in 4.1). By doing this step,

the neural network will learn the regression problem using the smoothed LED signals

which is the essential information about the respiratory signal from the finger-tip sensor.

In order to do this smoothing, we can apply a low-pass filter to zero out the

higher frequencies related to the pulse signal. However, instead of applying this filter

which will cost O(N logN), we can perform a moving average through a pass over the

data in O(N) time. Concretely, we shift a sliding window over the signal and compute

the average each time. Mathematically, since moving average is a type of convolution,

it is equivalent to a low-pass filter which is used in signal processing [17].

The resulting signal is a smoothed version of the original signal (See Figures

4.2 and 4.3). Applying the moving average filter, we can also remove the noise from

the breathing signal as well. In that case, we can feed the signals with less noise to the

neural network, so that it can predict better on noisy unseen data.

48

Time (s)
0 10 20 30 40 50 60 70

V
o
lt
a
g
e
 (

V
)

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
Original LED Signals

LED 1
LED 2

Time (s)
0 10 20 30 40 50 60 70

V
o
lt
a
g
e
 (

V
)

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
Filtered LED Signals by Moving Average

LED 1
LED 2

Figure 4.2: The original and filtered LED signals using the moving average with window
of 24 samples.

49

Time (s)
0 10 20 30 40 50 60 70

P
re

s
s
u
re

 (
m

m
H

g
)

-4

-3

-2

-1

0

1

2

3

4
Original Pressure Signal

Time (s)
0 10 20 30 40 50 60 70

P
re

s
s
u
re

 (
m

m
H

g
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Filtered Pressure Signal by Moving Average

Figure 4.3: The original and filtered breathing signal using the moving average with
window of 24 samples.

50

4.4.2 Auto-Encoders

Auto-encoders [3] were proposed to overcome the difficulties related to learning

deep neural networks. The goal of auto-encoders is to map the inputs into high-level

intermediate representations, so that it can be used as an initial step of unsupervised

learning before training the model. This step is also known as pre-training [3].

In each iteration of this unsupervised learning procedure, we are focused on

exactly one hidden layer of the network. Concretely, a new neural network with single

hidden layer is trained given the same target values as inputs which are coming from the

mapping of original inputs based on previous layers. Therefore, in this greedy layer-wise

algorithm, we compute the set of weights for the neurons in each layer such that it can

reproduce its input. Then, we use these weights as an initialization and proceed with

the training phase of neural network as a regular supervised learning step (which is also

known as fine-tuning [3]).

In this thesis, we perform pre-training to our network by treating the layers of

the network as stacked auto-encoders.

4.4.2.1 Denoising Auto-Encoders

Denoising auto-encoders [19] are a variant of ordinary auto-encoders devel-

oped from the idea of making the intermediate presentation learned by auto-encoders

robust to possible corruption in the input. Similar to ordinary auto-encoders, denois-

51

ing auto-encoders also work in greedy layer-wise manner; however, they are trained to

reconstruct the original inputs given the perturbed input. Like ordinary auto-encoders,

denoising auto-encoders can be stacked and pre-trained to initialize the weights of the

neural networks.

In this thesis, we also try performing denoising auto-encoders in order to find a

robust representation of the inputs. Note that having robust high-level features can help

in this case since the inputs are very noisy due to the fact that they are low-frequency

breathing signal polluted by high-frequency pulse signal.

52

Chapter 5

Experiments and Results

For our experiments, 6 volunteers from both genders and different races par-

ticipated in this research. We performed 3 one-minute trials of measurements on each

human subject, that is, we obtained three datasets associated with each person. In each

trial, while they had the finger-tip component on their fingers, they breathed normally

into the tube 1. In order to have a machine learning setting, for each human subject,

we used two datasets for training and one for testing.

We implemented the algorithms in MATLAB and applied both ideal filtering

and neural networks techniques for the data corresponding to each volunteer. Due to

several local minima for the cost function in neural networks, in each run of the algo-

rithm, we observed that the reconstructed signals were not the same 2; however, this

1Since breathing into the mouthpiece involved some efforts, we asked them to breath “slowly”, so
that their efforts would not cause heavy breathing.

2As discussed in 4.3, we train multiple neural networks (10 in this case) and use their average for
prediction in order to mitigate this problem.

53

problem did not exist with using filters as a reconstruction approach.

For neural network, we tried 8 different configurations which were the combi-

nations of the three options below:

1. Using one or two hidden layers. 3

2. Using the Moving Average (MA) as a pre-processing step.

3. Using Denoising Auto-Encoders (AE) as a pre-processing step 4.

In all configurations, we feed the neural networks with raw breathing signal as target,

except MA in which smoothed breathing signal is passed as target. Also in all configu-

rations, we train the neural networks with the square error as the loss function.

For ideal filtering, we presume that performing it offline and in batch fashion

has a better precision in comparison with doing it online with sliding window. Con-

sequently, we used offline ideal filtering for the sake of these experiments. We observe

that, even by doing so, using ideal filtering for signal reconstruction has a worse perfor-

mance comparing to neural network in most cases.

To evaluate the performance of each signal reconstruction method, we use the

Signal Error Function (SEF) defined in Definition 1 in Chapter 2 with one-dimensional

3We used 9 neurons for one hidden layers, and layers of 6 and 3 neurons for two hidden layers.
4This is done after applying the Moving Average step - if exists

54

absolute and square loss functions:

Absolute Loss: SEFABS(f, g) = min
a∈R+

∑
x∈X

∣∣∣f̃(x)− a · g̃(x)
∣∣∣

Square Loss: SEFSQR(f, g) = min
a∈R+

∑
x∈X

(
f̃(x)− a · g̃(x)

)2

where f̃ and g̃ are the zero-mean signals obtained from centering f and g, respectively.

It is worth noting that one may expect that the minimizing “a” in definition above be

close to 1 for neural networks; however, in our experiments, it varies from 0.2 to 5.

Tables 5.1 and 5.2 show the performance of neural networks for each of the 8

settings and offline ideal filtering for each human subject in terms of SEF with square

and absolute losses. See Appendix for visualized performances of applying both filtering

and neural networks to each human subject. Table 5.3 summarizes the performance of

each algorithm and setting in terms of square and absolute losses.

As one can observe, working with two hidden layers has a better performance

with respect to single hidden layer in neural networks. Also, it seems that using the

techniques of the moving average and denoising auto-encoders as pre-processing steps

does not help improve the performance in neural network. Based on our experiments,

reconstruction using filters is not as competitive in terms of SEF with absolute and

square loss. This approach is also not as efficient. In fact, as one can see the visualized

performances (see the Appendix) they may over-count the number of inhalations. Nev-

ertheless, ideal filters seem to have a reasonable performance and can serve as a good

55

S
u

b
je

ct
S

in
gl

e
H

id
d

en
L

ay
er

T
w

o
H

id
d

en
L

ay
er

s
F

il
te

r
w

/
M

A
w

/o
M

A
w

/
M

A
w

/o
M

A
w

/
A

E
w

/o
A

E
w

/
A

E
w

/o
A

E
w

/
A

E
w

/o
A

E
w

/
A

E
w

/o
A

E

1
3
.8

4
4

3.
51

4
3.

79
5

3.
71

2
3.

27
7

3
.0

7
8

3.
83

9
3.

43
4

4.
42

4

2
4
.5

6
6

5.
91

9
4.

25
4

4.
66

1
4.

07
8

3
.9

1
5

4.
03

3
4.

10
2

4.
91

7

3
0
.6

9
9

0.
67

1
0.

57
9

0.
66

5
0
.2

3
4

0.
34

5
0.

28
2

0.
41

6
1.

79
5

4
1
.2

2
2

1.
82

0
0.

73
9

1.
20

6
0.

35
9

0.
48

4
0.

22
4

0
.1

5
2

2.
87

0

5
1
.0

8
8

1.
09

5
1.

27
3

1.
16

0
0.

99
8

0
.9

5
0

1.
16

6
1.

02
6

1.
21

6

6
2
.1

9
7

2.
22

2
1.

51
4

1.
49

7
1.

51
6

1.
80

6
1
.3

4
1

1.
53

1
1.

95
3

T
ab

le
5.

1:
A

b
so

lu
te

lo
ss

of
d

iff
er

en
t

al
go

ri
th

m
s

an
d

se
tt

in
g

fo
r

al
l

h
u

m
an

su
b

je
ct

s.
N

ot
e

th
at

fi
lt

er
in

g
h

as
th

e
w

or
st

p
er

fo
rm

a
n

ce
in

a
ll

b
u

t
on

e
ca

se
.

S
u

b
je

ct
S

in
gl

e
H

id
d

en
L

ay
er

T
w

o
H

id
d

en
L

ay
er

s
F

il
te

r
w

/
M

A
w

/o
M

A
w

/
M

A
w

/o
M

A
w

/
A

E
w

/o
A

E
w

/
A

E
w

/o
A

E
w

/
A

E
w

/o
A

E
w

/
A

E
w

/o
A

E

1
2
1.

94
9

2
0.

81
1

20
.9

28
20

.9
39

21
.4

44
2
0
.1

0
2

21
.5

17
20

.6
66

23
.3

67

2
3
3.

84
7

3
4.

32
2

31
.6

36
32

.4
17

33
.6

01
33

.2
77

3
1
.4

4
6

31
.5

59
32

.7
40

3
2
.8

1
6

2
.1

3
2

2.
39

7
2.

37
3

2.
98

9
2.

41
1

2.
26

9
2.

48
7

4.
30

4

4
8
.0

1
3

7.
07

4
7.

47
7

7.
11

9
7.

32
2

7.
84

3
6
.5

8
1

7.
23

7
9.

30
4

5
3
.3

9
8

3.
39

4
3.

38
8

3.
39

6
3.

37
0

3.
35

2
3.

39
1

3.
38

5
2
.3

8
1

6
1
1.

86
6

1
1.

58
7

12
.1

21
12

.0
20

11
.0

21
11

.2
26

11
.3

26
11

.5
09

6
.0

2
8

T
ab

le
5
.2

:
S

q
u

ar
e

lo
ss

of
d

iff
er

en
t

al
go

ri
th

m
s

an
d

se
tt

in
g

fo
r

al
l

h
u

m
an

su
b

je
ct

s.

56

L
o
ss

S
in

gl
e

H
id

d
en

L
ay

er
T

w
o

H
id

d
en

L
ay

er
s

F
il

te
r

w
/

M
A

w
/o

M
A

w
/

M
A

w
/o

M
A

w
/

A
E

w
/o

A
E

w
/

A
E

w
/o

A
E

w
/

A
E

w
/o

A
E

w
/

A
E

w
/o

A
E

S
q
u

a
re

13
.6

4
8

13
.2

20
12

.9
91

13
.0

44
13

.2
91

13
.0

35
1
2
.7

5
5

12
.8

07
13

.0
21

A
b

so
lu

te
2
.2

69
2.

54
0

2.
02

6
2.

15
0

1
.7

4
4

1.
76

3
1.

81
4

1.
77

7
2.

86
2

T
ab

le
5.

3:
A

v
er

ag
e

p
er

fo
rm

an
ce

s
of

d
iff

er
en

t
al

go
ri

th
m

s
an

d
se

tt
in

g.

57

baseline algorithm to compare against.

58

Chapter 6

Conclusions

6.1 Overview and Conclusions

In this thesis, inspired by the trend of personalized health-care and wearable

sensors, we explore the problem of predicting breathing rate given the data coming from

a finger-tip sensor. To solve this problem, we attempted two approaches to reconstruct

the respiratory signal.

First, using fixed high and low frequency thresholds, we applied ideal low- and

high-pass filters to the LED signals from finger-tip sensor. Despite the reasonable per-

formance, it is not straightforward to make this approach online. In our experience, the

resulting online filtering algorithm is either slow or less accurate. Inspired by the prob-

lem, we developed the setting for sliding window DFT and ideal filtering. Moreover, we

proposed an efficient algorithm for doing sliding window DFT.

59

In the second approach, we see the problem as a regression problem in machine

learning. Using neural networks, once it is trained on the human subject, we were able to

approximately predict the breathing rate in real-time. Two hidden layers seemed to be

more accurate; however, using moving average filtering and/or denoising auto-encoders

does not look to improve the performance significantly.

6.2 Future Work

There are potentially several ways to continue this work in order to improve

the results and performance. These possible future works are discussed as follows:

1. Online Filtering and Machine Learning Techniques: In this thesis, we attempted

to solve the prediction problem by either filtering LED signals or train neural

networks, but we did not do a mixture of both. The reason is simply the fact that

applying ideal filter to the data in real-time is not known to be efficient. However,

perhaps using simpler filters (e.g. moving average) can make it possible to apply

filters in online fashion efficiently. In that case, one can also use neural networks

or some other model on top of filtering to learn the breathing signal.

2. Visualizing the Neurons: Each neuron in neural network represents a non-linear

feature in the high dimensional data. Those neurons that appear in layers which

are closer to the output represent a higher level feature. By finding the input

which maximizes the output of a neuron and somehow visualizing that, one can

60

see which feature a neuron is representing.

3. Finding a Better Loss Function for Signals: The loss functions that we defined in

this thesis, even though they are not directly involved in the learning model, have

some flaws. For instance, consider a signal like ŷ = x + sinx as a reconstruction

of the signal y = sinx. Observe that the peaks of y and ŷ are synchronized. Also

note that ŷ has distinguishable peaks which can be detected by our peak detection

algorithm. Nevertheless, it will incur a high loss using either of our loss functions.

4. Using Data-Dependent Filters: If we use regular low- and high-pass filters, the

filters will remain fixed and will not be able to adapt to the data. Using a filter

that can “learn” from data can be very helpful in this context. These filters are

known as data-dependent filters which seem to be practical in different applications

[9] [5].

61

Bibliography

[1] M. Avriel. Nonlinear programming: analysis and methods. Courier Corporation,

2003.

[2] K.E. Barrett et al. Ganong’s review of medical physiology. McGraw-Hill Medical

Asia, 2010.

[3] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al. Greedy layer-wise training

of deep networks. Advances in neural information processing systems, 19:153, 2007.

[4] C.M. Bishop et al. Pattern recognition and machine learning, volume 4. Springer

New York, 2006.

[5] E.A. Byrne and S.W. Porges. Data-dependent filter characteristics of peak-valley

respiratory sinus arrhythmia estimation: A cautionary note. Psychophysiology,

30(4):397–404, 1993.

[6] H.C. Chen and S.W. Chen. A moving average based filtering system with its

application to real-time QRS detection. In Computers in Cardiology, 2003, pages

585–588. IEEE, 2003.

62

[7] S. Dasgupta, C.H. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill, Inc.,

2006.

[8] S. Dua, U.R. Acharya, and P. Dua. Machine Learning in Healthcare Informatics.

Springer, 2014.

[9] S.R. Fanello, C. Keskin, P. Kohli, S. Izadi, J. Shotton, A. Criminisi, U. Pattacini,

and T. Paek. Filter forests for learning data-dependent convolutional kernels. In

Computer Vision and Pattern Recognition (CVPR), pages 1709–1716. IEEE, 2014.

[10] M. Guthaus and L. Klein. unpublished data. 2015.

[11] K.A. Hausman and E.B. Merrick. Pulse oximeter, November 28 1989. US Patent

4,883,353.

[12] E. Jacobsen and R. Lyons. The Sliding DFT. Signal Processing Magazine, IEEE,

20(2):74–80, 2003.

[13] L. Mason. Signal processing methods for non-invasive respiration monitoring. PhD

thesis, Department of Engineering Science, University of Oxford, 2002.

[14] G.B. Moody, R.G Mark, M.A. Bump, J.S. Weinstein, A.D Berman, J.E. Mietus,

and A.L. Goldberger. Clinical validation of the ECG-derived respiration (EDR)

technique. Group, 1(3), 1986.

[15] G.B Moody, R.G Mark, A. Zoccola, and S. Mantero. Derivation of respiratory

signals from multi-lead ECGs. Computers in cardiology, 12(1985):113–116, 1985.

63

[16] Y.M. Mughal. Decomposing of cardiac and respiratory signals from electrical bio-

impedance data using filtering method. In The International Conference on Health

Informatics, pages 252–255. Springer, 2014.

[17] A.V. Oppenheim, R.W. Schafer, J.R. Buck, et al. Discrete-time signal processing,

volume 2. Prentice-hall Englewood Cliffs, 1989.

[18] A. Travaglini, C. Lamberti, J. DeBie, and M. Ferri. Respiratory signal derived from

eight-lead ECG. In Computers in Cardiology 1998, pages 65–68. IEEE, 1998.

[19] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing

robust features with denoising autoencoders. In Proceedings of the 25th interna-

tional conference on Machine learning, pages 1096–1103. ACM, 2008.

[20] J.E. Whitney II and L. Solomon. Respiration rate signal extraction from heart

rate. In Aerospace/Defense Sensing, Simulation, and Controls, pages 104–112.

International Society for Optics and Photonics, 2001.

64

Appendix A

Visualized Performance over Human

Subjects

In all cases, we used two hidden layers in neural network due its better perfor-

mance. Since using moving average filter and denoising auto-encoders does not improve

the performance significantly, they are not used in the visualized performances below.

65

Figure A.1: Comparing the reconstructed breathing signals on human subject 1.

66

Figure A.2: Comparing the reconstructed breathing signals on human subject 2.

67

Figure A.3: Comparing the reconstructed breathing signals on human subject 3.

68

Figure A.4: Comparing the reconstructed breathing signals on human subject 4.

69

Figure A.5: Comparing the reconstructed breathing signals on human subject 5.

70

Figure A.6: Comparing the reconstructed breathing signals on human subject 6.

71

